Cargando…

Cross-Task Consistency of Electroencephalography-Based Mental Workload Indicators: Comparisons Between Power Spectral Density and Task-Irrelevant Auditory Event-Related Potentials

Mental workload (MWL) estimators based on ongoing electroencephalography (EEG) and event-related potentials (ERPs) have shown great potentials to build adaptive aiding systems for human–machine systems by estimating MWL in real time. However, extracting EEG features which are consistent in indicatin...

Descripción completa

Detalles Bibliográficos
Autores principales: Ke, Yufeng, Jiang, Tao, Liu, Shuang, Cao, Yong, Jiao, Xuejun, Jiang, Jin, Ming, Dong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637174/
https://www.ncbi.nlm.nih.gov/pubmed/34867143
http://dx.doi.org/10.3389/fnins.2021.703139
Descripción
Sumario:Mental workload (MWL) estimators based on ongoing electroencephalography (EEG) and event-related potentials (ERPs) have shown great potentials to build adaptive aiding systems for human–machine systems by estimating MWL in real time. However, extracting EEG features which are consistent in indicating MWL across different tasks is still one of the critical challenges. This study attempts to compare the cross-task consistency in indexing MWL variations between two commonly used EEG-based MWL indicators, power spectral density (PSD) of ongoing EEG and task-irrelevant auditory ERPs (tir-aERPs). The verbal N-back and the multi-attribute task battery (MATB), both with two difficulty levels, were employed in the experiment, along with task-irrelevant auditory probes. EEG was recorded from 17 subjects when they were performing the tasks. The tir-aERPs elicited by the auditory probes and the relative PSDs of ongoing EEG between two consecutive auditory probes were extracted and statistically analyzed to reveal the effects of MWL and task type. Discriminant analysis and support vector machine were employed to examine the generalization of tir-aERP and PSD features in indexing MWL variations across different tasks. The results showed that the amplitudes of tir-aERP components, N1, early P3a, late P3a, and the reorienting negativity, significantly decreased with the increasing MWL in both N-back and MATB. Task type had no obvious influence on the amplitudes and topological layout of the MWL-sensitive tir-aERP features. The relative PSDs in θ, α, and low β bands were also sensitive to MWL variations. However, the MWL-sensitive PSD features and their topological patterns were significantly affected by task type. The cross-task classification results based on tir-aERP features also significantly outperformed the PSD features. These results suggest that the tir-aERPs should be potentially more consistent MWL indicators across very different task types when compared to PSD. The current study may provide new insights to our understanding of the common and distinctive neuropsychological essences of MWL across different tasks.