Cargando…

Seamless integration of bioelectronic interface in an animal model via invivo polymerization of conjugated oligomers

Leveraging the biocatalytic machinery of living organisms for fabricating functional bioelectronic interfaces, in vivo, defines a new class of micro-biohybrids enabling the seamless integration of technology with living biological systems. Previously, we have demonstrated the in vivo polymerization...

Descripción completa

Detalles Bibliográficos
Autores principales: Tommasini, Giuseppina, Dufil, Gwennaël, Fardella, Federica, Strakosas, Xenofon, Fergola, Eugenio, Abrahamsson, Tobias, Bliman, David, Olsson, Roger, Berggren, Magnus, Tino, Angela, Stavrinidou, Eleni, Tortiglione, Claudia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637319/
https://www.ncbi.nlm.nih.gov/pubmed/34901533
http://dx.doi.org/10.1016/j.bioactmat.2021.08.025
_version_ 1784608717812006912
author Tommasini, Giuseppina
Dufil, Gwennaël
Fardella, Federica
Strakosas, Xenofon
Fergola, Eugenio
Abrahamsson, Tobias
Bliman, David
Olsson, Roger
Berggren, Magnus
Tino, Angela
Stavrinidou, Eleni
Tortiglione, Claudia
author_facet Tommasini, Giuseppina
Dufil, Gwennaël
Fardella, Federica
Strakosas, Xenofon
Fergola, Eugenio
Abrahamsson, Tobias
Bliman, David
Olsson, Roger
Berggren, Magnus
Tino, Angela
Stavrinidou, Eleni
Tortiglione, Claudia
author_sort Tommasini, Giuseppina
collection PubMed
description Leveraging the biocatalytic machinery of living organisms for fabricating functional bioelectronic interfaces, in vivo, defines a new class of micro-biohybrids enabling the seamless integration of technology with living biological systems. Previously, we have demonstrated the in vivo polymerization of conjugated oligomers forming conductors within the structures of plants. Here, we expand this concept by reporting that Hydra, an invertebrate animal, polymerizes the conjugated oligomer ETE-S both within cells that expresses peroxidase activity and within the adhesive material that is secreted to promote underwater surface adhesion. The resulting conjugated polymer forms electronically conducting and electrochemically active μm-sized domains, which are inter-connected resulting in percolative conduction pathways extending beyond 100 μm, that are fully integrated within the Hydra tissue and the secreted mucus. Furthermore, the introduction and in vivo polymerization of ETE-S can be used as a biochemical marker to follow the dynamics of Hydra budding (reproduction) and regeneration. This work paves the way for well-defined self-organized electronics in animal tissue to modulate biological functions and in vivo biofabrication of hybrid functional materials and devices.
format Online
Article
Text
id pubmed-8637319
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher KeAi Publishing
record_format MEDLINE/PubMed
spelling pubmed-86373192021-12-09 Seamless integration of bioelectronic interface in an animal model via invivo polymerization of conjugated oligomers Tommasini, Giuseppina Dufil, Gwennaël Fardella, Federica Strakosas, Xenofon Fergola, Eugenio Abrahamsson, Tobias Bliman, David Olsson, Roger Berggren, Magnus Tino, Angela Stavrinidou, Eleni Tortiglione, Claudia Bioact Mater Article Leveraging the biocatalytic machinery of living organisms for fabricating functional bioelectronic interfaces, in vivo, defines a new class of micro-biohybrids enabling the seamless integration of technology with living biological systems. Previously, we have demonstrated the in vivo polymerization of conjugated oligomers forming conductors within the structures of plants. Here, we expand this concept by reporting that Hydra, an invertebrate animal, polymerizes the conjugated oligomer ETE-S both within cells that expresses peroxidase activity and within the adhesive material that is secreted to promote underwater surface adhesion. The resulting conjugated polymer forms electronically conducting and electrochemically active μm-sized domains, which are inter-connected resulting in percolative conduction pathways extending beyond 100 μm, that are fully integrated within the Hydra tissue and the secreted mucus. Furthermore, the introduction and in vivo polymerization of ETE-S can be used as a biochemical marker to follow the dynamics of Hydra budding (reproduction) and regeneration. This work paves the way for well-defined self-organized electronics in animal tissue to modulate biological functions and in vivo biofabrication of hybrid functional materials and devices. KeAi Publishing 2021-08-28 /pmc/articles/PMC8637319/ /pubmed/34901533 http://dx.doi.org/10.1016/j.bioactmat.2021.08.025 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Tommasini, Giuseppina
Dufil, Gwennaël
Fardella, Federica
Strakosas, Xenofon
Fergola, Eugenio
Abrahamsson, Tobias
Bliman, David
Olsson, Roger
Berggren, Magnus
Tino, Angela
Stavrinidou, Eleni
Tortiglione, Claudia
Seamless integration of bioelectronic interface in an animal model via invivo polymerization of conjugated oligomers
title Seamless integration of bioelectronic interface in an animal model via invivo polymerization of conjugated oligomers
title_full Seamless integration of bioelectronic interface in an animal model via invivo polymerization of conjugated oligomers
title_fullStr Seamless integration of bioelectronic interface in an animal model via invivo polymerization of conjugated oligomers
title_full_unstemmed Seamless integration of bioelectronic interface in an animal model via invivo polymerization of conjugated oligomers
title_short Seamless integration of bioelectronic interface in an animal model via invivo polymerization of conjugated oligomers
title_sort seamless integration of bioelectronic interface in an animal model via invivo polymerization of conjugated oligomers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637319/
https://www.ncbi.nlm.nih.gov/pubmed/34901533
http://dx.doi.org/10.1016/j.bioactmat.2021.08.025
work_keys_str_mv AT tommasinigiuseppina seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers
AT dufilgwennael seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers
AT fardellafederica seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers
AT strakosasxenofon seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers
AT fergolaeugenio seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers
AT abrahamssontobias seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers
AT blimandavid seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers
AT olssonroger seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers
AT berggrenmagnus seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers
AT tinoangela seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers
AT stavrinidoueleni seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers
AT tortiglioneclaudia seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers