Cargando…
Seamless integration of bioelectronic interface in an animal model via invivo polymerization of conjugated oligomers
Leveraging the biocatalytic machinery of living organisms for fabricating functional bioelectronic interfaces, in vivo, defines a new class of micro-biohybrids enabling the seamless integration of technology with living biological systems. Previously, we have demonstrated the in vivo polymerization...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637319/ https://www.ncbi.nlm.nih.gov/pubmed/34901533 http://dx.doi.org/10.1016/j.bioactmat.2021.08.025 |
_version_ | 1784608717812006912 |
---|---|
author | Tommasini, Giuseppina Dufil, Gwennaël Fardella, Federica Strakosas, Xenofon Fergola, Eugenio Abrahamsson, Tobias Bliman, David Olsson, Roger Berggren, Magnus Tino, Angela Stavrinidou, Eleni Tortiglione, Claudia |
author_facet | Tommasini, Giuseppina Dufil, Gwennaël Fardella, Federica Strakosas, Xenofon Fergola, Eugenio Abrahamsson, Tobias Bliman, David Olsson, Roger Berggren, Magnus Tino, Angela Stavrinidou, Eleni Tortiglione, Claudia |
author_sort | Tommasini, Giuseppina |
collection | PubMed |
description | Leveraging the biocatalytic machinery of living organisms for fabricating functional bioelectronic interfaces, in vivo, defines a new class of micro-biohybrids enabling the seamless integration of technology with living biological systems. Previously, we have demonstrated the in vivo polymerization of conjugated oligomers forming conductors within the structures of plants. Here, we expand this concept by reporting that Hydra, an invertebrate animal, polymerizes the conjugated oligomer ETE-S both within cells that expresses peroxidase activity and within the adhesive material that is secreted to promote underwater surface adhesion. The resulting conjugated polymer forms electronically conducting and electrochemically active μm-sized domains, which are inter-connected resulting in percolative conduction pathways extending beyond 100 μm, that are fully integrated within the Hydra tissue and the secreted mucus. Furthermore, the introduction and in vivo polymerization of ETE-S can be used as a biochemical marker to follow the dynamics of Hydra budding (reproduction) and regeneration. This work paves the way for well-defined self-organized electronics in animal tissue to modulate biological functions and in vivo biofabrication of hybrid functional materials and devices. |
format | Online Article Text |
id | pubmed-8637319 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | KeAi Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-86373192021-12-09 Seamless integration of bioelectronic interface in an animal model via invivo polymerization of conjugated oligomers Tommasini, Giuseppina Dufil, Gwennaël Fardella, Federica Strakosas, Xenofon Fergola, Eugenio Abrahamsson, Tobias Bliman, David Olsson, Roger Berggren, Magnus Tino, Angela Stavrinidou, Eleni Tortiglione, Claudia Bioact Mater Article Leveraging the biocatalytic machinery of living organisms for fabricating functional bioelectronic interfaces, in vivo, defines a new class of micro-biohybrids enabling the seamless integration of technology with living biological systems. Previously, we have demonstrated the in vivo polymerization of conjugated oligomers forming conductors within the structures of plants. Here, we expand this concept by reporting that Hydra, an invertebrate animal, polymerizes the conjugated oligomer ETE-S both within cells that expresses peroxidase activity and within the adhesive material that is secreted to promote underwater surface adhesion. The resulting conjugated polymer forms electronically conducting and electrochemically active μm-sized domains, which are inter-connected resulting in percolative conduction pathways extending beyond 100 μm, that are fully integrated within the Hydra tissue and the secreted mucus. Furthermore, the introduction and in vivo polymerization of ETE-S can be used as a biochemical marker to follow the dynamics of Hydra budding (reproduction) and regeneration. This work paves the way for well-defined self-organized electronics in animal tissue to modulate biological functions and in vivo biofabrication of hybrid functional materials and devices. KeAi Publishing 2021-08-28 /pmc/articles/PMC8637319/ /pubmed/34901533 http://dx.doi.org/10.1016/j.bioactmat.2021.08.025 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Tommasini, Giuseppina Dufil, Gwennaël Fardella, Federica Strakosas, Xenofon Fergola, Eugenio Abrahamsson, Tobias Bliman, David Olsson, Roger Berggren, Magnus Tino, Angela Stavrinidou, Eleni Tortiglione, Claudia Seamless integration of bioelectronic interface in an animal model via invivo polymerization of conjugated oligomers |
title | Seamless integration of bioelectronic interface in an animal model via invivo polymerization of conjugated oligomers |
title_full | Seamless integration of bioelectronic interface in an animal model via invivo polymerization of conjugated oligomers |
title_fullStr | Seamless integration of bioelectronic interface in an animal model via invivo polymerization of conjugated oligomers |
title_full_unstemmed | Seamless integration of bioelectronic interface in an animal model via invivo polymerization of conjugated oligomers |
title_short | Seamless integration of bioelectronic interface in an animal model via invivo polymerization of conjugated oligomers |
title_sort | seamless integration of bioelectronic interface in an animal model via invivo polymerization of conjugated oligomers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637319/ https://www.ncbi.nlm.nih.gov/pubmed/34901533 http://dx.doi.org/10.1016/j.bioactmat.2021.08.025 |
work_keys_str_mv | AT tommasinigiuseppina seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT dufilgwennael seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT fardellafederica seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT strakosasxenofon seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT fergolaeugenio seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT abrahamssontobias seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT blimandavid seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT olssonroger seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT berggrenmagnus seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT tinoangela seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT stavrinidoueleni seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT tortiglioneclaudia seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers |