Cargando…
Spatiotemporal trajectories in resting-state FMRI revealed by convolutional variational autoencoder
Recent resting-state fMRI studies have shown that brain activity exhibits temporal variations in functional connectivity by using various approaches including sliding window correlation, co-activation patterns, independent component analysis, quasi-periodic patterns, and hidden Markov models. These...
Autores principales: | Zhang, Xiaodi, Maltbie, Eric A., Keilholz, Shella D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637345/ https://www.ncbi.nlm.nih.gov/pubmed/34607021 http://dx.doi.org/10.1016/j.neuroimage.2021.118588 |
Ejemplares similares
-
Comparison of Resting-State Functional MRI Methods for Characterizing Brain Dynamics
por: Maltbie, Eric, et al.
Publicado: (2022) -
Brain network constraints and recurrent neural networks reproduce unique trajectories and state transitions seen over the span of minutes in resting-state fMRI
por: Kashyap, Amrit, et al.
Publicado: (2020) -
Representation learning of resting state fMRI with variational autoencoder
por: Kim, Jung-Hoon, et al.
Publicado: (2021) -
Editorial: Origins of the Resting-State fMRI Signal
por: Chen, J. Jean, et al.
Publicado: (2020) -
Low-frequency EEG correlates of fMRI in the resting state
por: Grooms, Joshua K, et al.
Publicado: (2012)