Cargando…
Development and Validation of a Novel Prognostic Model for Endometrial Cancer Based on Clinical Characteristics
OBJECTIVE: Existing prognostic models for endometrial cancer are short of facility and effective validation. In this study, we aim to develop and validate a novel prognostic model for endometrial cancer based on clinical characteristics. METHODS: The clinical data such as age, BMI (body mass index),...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637423/ https://www.ncbi.nlm.nih.gov/pubmed/34866940 http://dx.doi.org/10.2147/CMAR.S338861 |
_version_ | 1784608739475587072 |
---|---|
author | Yu, Zhicheng Wei, Sitian Zhang, Jun Shi, Rui An, Lanfen Feng, Dilu Wang, Hongbo |
author_facet | Yu, Zhicheng Wei, Sitian Zhang, Jun Shi, Rui An, Lanfen Feng, Dilu Wang, Hongbo |
author_sort | Yu, Zhicheng |
collection | PubMed |
description | OBJECTIVE: Existing prognostic models for endometrial cancer are short of facility and effective validation. In this study, we aim to develop and validate a novel prognostic model for endometrial cancer based on clinical characteristics. METHODS: The clinical data such as age, BMI (body mass index), FIGO stage, surgical approach, myometrial invasion, grade, lymph node metastasis, pathology and menopause status were collected for constructing and validating the prognostic model from The Cancer Genome Atlas (TCGA) and Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, respectively. COX regression and the least absolute shrinkage and selection operator (LASSO) COX were applied to identify the significant predictors of overall survival (OS) and construct the prognostic model. The discrimination, calibration, and clinical usefulness of the model were evaluated in both cohorts. RESULTS: Three hundred and sixty-seven and 286 EC patients were collected for training and validation cohort, respectively. A clinical prognostic model integrating six clinical variables including age, BMI, FIGO stage, surgical approach, myometrial invasion and grade was established. K-M analysis shows a significant difference between the low- and high-risk groups. The area under the receiver operating characteristic curve (AUC-ROC) was 0.775 (95% CI, 0.708 to 0.843) and 0.870 (95% CI, 0.758 to 0.982) for the training and validation cohorts which indicating reliable discrimination. The calibration curve revealed excellent predictive accuracy and the Hosmer–Lemeshow test also verified this. Decision curve analysis (DCA) for the prognostic model indicated that it would add more benefits than either the detect-all-patients scheme or the detect-none scheme. In addition, our model has a superior AUC comparing with any single factor as predicting OS. CONCLUSION: Our predictive model offers a convenient and accurate tool for clinicians to estimate the prognosis of EC patients. |
format | Online Article Text |
id | pubmed-8637423 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-86374232021-12-03 Development and Validation of a Novel Prognostic Model for Endometrial Cancer Based on Clinical Characteristics Yu, Zhicheng Wei, Sitian Zhang, Jun Shi, Rui An, Lanfen Feng, Dilu Wang, Hongbo Cancer Manag Res Original Research OBJECTIVE: Existing prognostic models for endometrial cancer are short of facility and effective validation. In this study, we aim to develop and validate a novel prognostic model for endometrial cancer based on clinical characteristics. METHODS: The clinical data such as age, BMI (body mass index), FIGO stage, surgical approach, myometrial invasion, grade, lymph node metastasis, pathology and menopause status were collected for constructing and validating the prognostic model from The Cancer Genome Atlas (TCGA) and Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, respectively. COX regression and the least absolute shrinkage and selection operator (LASSO) COX were applied to identify the significant predictors of overall survival (OS) and construct the prognostic model. The discrimination, calibration, and clinical usefulness of the model were evaluated in both cohorts. RESULTS: Three hundred and sixty-seven and 286 EC patients were collected for training and validation cohort, respectively. A clinical prognostic model integrating six clinical variables including age, BMI, FIGO stage, surgical approach, myometrial invasion and grade was established. K-M analysis shows a significant difference between the low- and high-risk groups. The area under the receiver operating characteristic curve (AUC-ROC) was 0.775 (95% CI, 0.708 to 0.843) and 0.870 (95% CI, 0.758 to 0.982) for the training and validation cohorts which indicating reliable discrimination. The calibration curve revealed excellent predictive accuracy and the Hosmer–Lemeshow test also verified this. Decision curve analysis (DCA) for the prognostic model indicated that it would add more benefits than either the detect-all-patients scheme or the detect-none scheme. In addition, our model has a superior AUC comparing with any single factor as predicting OS. CONCLUSION: Our predictive model offers a convenient and accurate tool for clinicians to estimate the prognosis of EC patients. Dove 2021-11-27 /pmc/articles/PMC8637423/ /pubmed/34866940 http://dx.doi.org/10.2147/CMAR.S338861 Text en © 2021 Yu et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Yu, Zhicheng Wei, Sitian Zhang, Jun Shi, Rui An, Lanfen Feng, Dilu Wang, Hongbo Development and Validation of a Novel Prognostic Model for Endometrial Cancer Based on Clinical Characteristics |
title | Development and Validation of a Novel Prognostic Model for Endometrial Cancer Based on Clinical Characteristics |
title_full | Development and Validation of a Novel Prognostic Model for Endometrial Cancer Based on Clinical Characteristics |
title_fullStr | Development and Validation of a Novel Prognostic Model for Endometrial Cancer Based on Clinical Characteristics |
title_full_unstemmed | Development and Validation of a Novel Prognostic Model for Endometrial Cancer Based on Clinical Characteristics |
title_short | Development and Validation of a Novel Prognostic Model for Endometrial Cancer Based on Clinical Characteristics |
title_sort | development and validation of a novel prognostic model for endometrial cancer based on clinical characteristics |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637423/ https://www.ncbi.nlm.nih.gov/pubmed/34866940 http://dx.doi.org/10.2147/CMAR.S338861 |
work_keys_str_mv | AT yuzhicheng developmentandvalidationofanovelprognosticmodelforendometrialcancerbasedonclinicalcharacteristics AT weisitian developmentandvalidationofanovelprognosticmodelforendometrialcancerbasedonclinicalcharacteristics AT zhangjun developmentandvalidationofanovelprognosticmodelforendometrialcancerbasedonclinicalcharacteristics AT shirui developmentandvalidationofanovelprognosticmodelforendometrialcancerbasedonclinicalcharacteristics AT anlanfen developmentandvalidationofanovelprognosticmodelforendometrialcancerbasedonclinicalcharacteristics AT fengdilu developmentandvalidationofanovelprognosticmodelforendometrialcancerbasedonclinicalcharacteristics AT wanghongbo developmentandvalidationofanovelprognosticmodelforendometrialcancerbasedonclinicalcharacteristics |