Cargando…
Machine Learning for Head and Neck Cancer: A Safe Bet?—A Clinically Oriented Systematic Review for the Radiation Oncologist
BACKGROUND AND PURPOSE: Machine learning (ML) is emerging as a feasible approach to optimize patients’ care path in Radiation Oncology. Applications include autosegmentation, treatment planning optimization, and prediction of oncological and toxicity outcomes. The purpose of this clinically oriented...
Autores principales: | Volpe, Stefania, Pepa, Matteo, Zaffaroni, Mattia, Bellerba, Federica, Santamaria, Riccardo, Marvaso, Giulia, Isaksson, Lars Johannes, Gandini, Sara, Starzyńska, Anna, Leonardi, Maria Cristina, Orecchia, Roberto, Alterio, Daniela, Jereczek-Fossa, Barbara Alicja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637856/ https://www.ncbi.nlm.nih.gov/pubmed/34869010 http://dx.doi.org/10.3389/fonc.2021.772663 |
Ejemplares similares
-
Machine Learning-Based Models for Prediction of Toxicity Outcomes in Radiotherapy
por: Isaksson, Lars J., et al.
Publicado: (2020) -
Blood- and Imaging-Derived Biomarkers for Oncological Outcome Modelling in Oropharyngeal Cancer: Exploring the Low-Hanging Fruit
por: Volpe, Stefania, et al.
Publicado: (2023) -
Recent Advances in the Management of Hormone-Sensitive Oligometastatic Prostate Cancer
por: Marvaso, Giulia, et al.
Publicado: (2022) -
Prognostic Impact of Sarcopenia’s Occurrence during Radiotherapy in Oropharyngeal Cancer Patients
por: Bergamaschi, Luca, et al.
Publicado: (2023) -
Unraveling Mitochondrial Determinants of Tumor Response to Radiation Therapy
por: Zaffaroni, Mattia, et al.
Publicado: (2022)