Cargando…
Filter Feature Selection for Unsupervised Clustering of Designer Drugs Using DFT Simulated IR Spectra Data
[Image: see text] The rapid emergence of novel psychoactive substances (NPS) poses new challenges and requirements for forensic testing/analysis techniques. This paper aims to explore the application of unsupervised clustering of NPS compounds’ infrared spectra. Two statistical measures, Pearson and...
Autor principal: | He, Kedan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8638022/ https://www.ncbi.nlm.nih.gov/pubmed/34870036 http://dx.doi.org/10.1021/acsomega.1c04945 |
Ejemplares similares
-
Relative Populations and IR Spectra of Cu(38) Cluster at Finite Temperature Based on DFT and Statistical Thermodynamics Calculations
por: Buelna-García, Carlos Emiliano, et al.
Publicado: (2022) -
A scale space approach for unsupervised feature selection in mass spectra classification for ovarian cancer detection
por: Ceccarelli, Michele, et al.
Publicado: (2009) -
A DFT Study of CO(2) Hydrogenation on Faujasite‐Supported Ir(4) Clusters: on the Role of Water for Selectivity Control
por: Szyja, Bartłomiej M., et al.
Publicado: (2016) -
Pharmacological affinity fingerprints derived from bioactivity data for the identification of designer drugs
por: He, Kedan
Publicado: (2022) -
Correction to: Pharmacological affinity fingerprints derived from bioactivity data for the identification of designer drugs
por: He, Kedan
Publicado: (2022)