Cargando…
Impact of Ionic Liquid on Hydrogen Production from Waste Oilfield Water
[Image: see text] We present a promising method for producing pure hydrogen energy from the dissolution of zinc metal in waste oilfield water (WOW) under various conditions. This process mainly consumes zinc metal and WOW. The results show robust dependence on the temperature and solution pH of the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8638025/ https://www.ncbi.nlm.nih.gov/pubmed/34870019 http://dx.doi.org/10.1021/acsomega.1c04708 |
_version_ | 1784608867449044992 |
---|---|
author | Deyab, Mohamed A. Awadallah, Ahmed E. |
author_facet | Deyab, Mohamed A. Awadallah, Ahmed E. |
author_sort | Deyab, Mohamed A. |
collection | PubMed |
description | [Image: see text] We present a promising method for producing pure hydrogen energy from the dissolution of zinc metal in waste oilfield water (WOW) under various conditions. This process mainly consumes zinc metal and WOW. The results show robust dependence on the temperature and solution pH of the hydrogen gas output. Low pH (2.5) and high temperature (338 K) were discovered to be the better conditions for hydrogen production. The 1-ethyl-3-methylpyridinium ethyl sulfate (EMP-ES) ionic liquid is used to regulate the rate of hydrogen generation for the first time. It has been confirmed that the rate of the dissolution of zinc increased faster and produced more hydrogen per unit of time by an increase in solution temperature and a decrease in solution pH. The adsorption of EMP-ES on the active sites of the Zn surface is unrestrained with mixing physical and chemical orientations. SEM, EDX, and FTIR spectroscopy inspections have been utilized to identify and characterize surface corrosion of zinc in WOW. Furthermore, this process is completely secure and can generate energy on demand. |
format | Online Article Text |
id | pubmed-8638025 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-86380252021-12-03 Impact of Ionic Liquid on Hydrogen Production from Waste Oilfield Water Deyab, Mohamed A. Awadallah, Ahmed E. ACS Omega [Image: see text] We present a promising method for producing pure hydrogen energy from the dissolution of zinc metal in waste oilfield water (WOW) under various conditions. This process mainly consumes zinc metal and WOW. The results show robust dependence on the temperature and solution pH of the hydrogen gas output. Low pH (2.5) and high temperature (338 K) were discovered to be the better conditions for hydrogen production. The 1-ethyl-3-methylpyridinium ethyl sulfate (EMP-ES) ionic liquid is used to regulate the rate of hydrogen generation for the first time. It has been confirmed that the rate of the dissolution of zinc increased faster and produced more hydrogen per unit of time by an increase in solution temperature and a decrease in solution pH. The adsorption of EMP-ES on the active sites of the Zn surface is unrestrained with mixing physical and chemical orientations. SEM, EDX, and FTIR spectroscopy inspections have been utilized to identify and characterize surface corrosion of zinc in WOW. Furthermore, this process is completely secure and can generate energy on demand. American Chemical Society 2021-11-17 /pmc/articles/PMC8638025/ /pubmed/34870019 http://dx.doi.org/10.1021/acsomega.1c04708 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Deyab, Mohamed A. Awadallah, Ahmed E. Impact of Ionic Liquid on Hydrogen Production from Waste Oilfield Water |
title | Impact of Ionic Liquid on Hydrogen Production from
Waste Oilfield Water |
title_full | Impact of Ionic Liquid on Hydrogen Production from
Waste Oilfield Water |
title_fullStr | Impact of Ionic Liquid on Hydrogen Production from
Waste Oilfield Water |
title_full_unstemmed | Impact of Ionic Liquid on Hydrogen Production from
Waste Oilfield Water |
title_short | Impact of Ionic Liquid on Hydrogen Production from
Waste Oilfield Water |
title_sort | impact of ionic liquid on hydrogen production from
waste oilfield water |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8638025/ https://www.ncbi.nlm.nih.gov/pubmed/34870019 http://dx.doi.org/10.1021/acsomega.1c04708 |
work_keys_str_mv | AT deyabmohameda impactofionicliquidonhydrogenproductionfromwasteoilfieldwater AT awadallahahmede impactofionicliquidonhydrogenproductionfromwasteoilfieldwater |