Cargando…

Paricalcitol in hemodialysis patients with secondary hyperparathyroidism and its potential benefits

BACKGROUND: Secondary hyperparathyroidism (SHPT) is a common complication in patients with end-stage renal disease and it is also common in hemodialysis patients. SHPT can increase bone fragility and calcification of blood vessels and soft tissues, which greatly increases the risk of death. AIM: To...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xiu, Zhao, Feng, Pan, Wei-Juan, Di, Jia-Mei, Xie, Wei-Nan, Yuan, Ling, Liu, Zhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Baishideng Publishing Group Inc 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8638032/
https://www.ncbi.nlm.nih.gov/pubmed/34904087
http://dx.doi.org/10.12998/wjcc.v9.i33.10172
Descripción
Sumario:BACKGROUND: Secondary hyperparathyroidism (SHPT) is a common complication in patients with end-stage renal disease and it is also common in hemodialysis patients. SHPT can increase bone fragility and calcification of blood vessels and soft tissues, which greatly increases the risk of death. AIM: To discuss the outcome, safety and other potential benefits of paricalcitol injection in hemodialysis patients with SHPT. METHODS: We recruited 40 patients who received hemodialysis at our hospital for chronic renal failure with SHPT between March and December 2019. They received paricalcitol injection for 24 wk (starting dose, 0.06–0.08 μg/kg), three times per week. They were followed up at the baseline (week 0), week 4, week 12 and week 24. The primary outcome indicator was the percentage of patients with a > 30% decrease in intact parathyroid hormone (iPTH) levels at week 24 compared with the baseline. The secondary outcome indicators included percentage decrease in iPTH levels at week 24, standard-reaching rate of iPTH (percentage of patients with iPTH down to 130–585 pg/mL), changes in serum levels of calcium (Ca), phosphate (P), Ca × P product, alkaline phosphatase (ALP), creatinine (Cre), hemoglobin (Hb), and C-reactive protein (CRP), and incidence of adverse events (AEs). RESULTS: After 24 wk of treatment, iPTH levels decreased significantly (598.88 ± 381.29 pg/mL vs 888.84 ± 376.88 pg/mL, P < 0.05). More than 30% decrease of iPTH was found in 21 of 36 (58.33%) patients. The average decrease in iPTH levels was 32.16 ± 4.33%; the standard-reaching rate of iPTH levels was 66.67% (24/36); and ALP levels decreased significantly compared with the baseline (113.72 ± 41.73 IU/L vs 133.45 ± 56.86 IU/L) (t = 2.798, P < 0.05). There were no significant differences in the serum levels of calcium, Hb, Cre and CRP compared with the baseline (P > 0.05). After 24 wk of treatment, serum P levels decreased compared with the baseline (1.91 ± 0.40 mmol/L vs 2.16 ± 0.66 mmol/L) (t = 2.830, P < 0.05). Ca × P product decreased significantly compared with the baseline (56.38 ± 13.22 mg(2)/dL(2) vs 63.97 ± 20.30 mg(2)/dL(2)) (t = 2.717, P < 0.05). No serious adverse events occurred. CONCLUSION: Paricalcitol was a safe and effective treatment for hemodialysis patients with SHPT. It decreased serum levels of iPTH, ALP and P and maintained stability of serum Ca levels.