Cargando…
Identification of key genes as predictive biomarkers for osteosarcoma metastasis using translational bioinformatics
BACKGROUND: Osteosarcoma (OS) metastasis is the most common cause of cancer-related mortality, however, no sufficient clinical biomarkers have been identified. In this study, we identified five genes to help predict metastasis at diagnosis. METHODS: We performed weighted gene co-expression network a...
Autores principales: | Ding, Fu-peng, Tian, Jia-yi, Wu, Jing, Han, Dong-feng, Zhao, Ding |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8638136/ https://www.ncbi.nlm.nih.gov/pubmed/34856991 http://dx.doi.org/10.1186/s12935-021-02308-w |
Ejemplares similares
-
Identification of key biomarkers associated with cell adhesion in multiple myeloma by integrated bioinformatics analysis
por: Peng, Yue, et al.
Publicado: (2020) -
Identification of key serum biomarkers for the diagnosis and metastatic prediction of osteosarcoma by analysis of immune cell infiltration
por: Chen, Zhihao, et al.
Publicado: (2022) -
Identification of novel key genes associated with the metastasis of prostate cancer based on bioinformatics prediction and validation
por: Song, Feifeng, et al.
Publicado: (2021) -
Expression profile analysis identifies key genes as prognostic markers for metastasis of osteosarcoma
por: Guan, Xiaoqing, et al.
Publicado: (2020) -
Bioinformatics combined with quantitative proteomics analyses and identification of potential biomarkers in cholangiocarcinoma
por: Da, Zijian, et al.
Publicado: (2020)