Cargando…
Feature selection revisited in the single-cell era
Recent advances in single-cell biotechnologies have resulted in high-dimensional datasets with increased complexity, making feature selection an essential technique for single-cell data analysis. Here, we revisit feature selection techniques and summarise recent developments. We review their applica...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8638336/ https://www.ncbi.nlm.nih.gov/pubmed/34847932 http://dx.doi.org/10.1186/s13059-021-02544-3 |
Sumario: | Recent advances in single-cell biotechnologies have resulted in high-dimensional datasets with increased complexity, making feature selection an essential technique for single-cell data analysis. Here, we revisit feature selection techniques and summarise recent developments. We review their application to a range of single-cell data types generated from traditional cytometry and imaging technologies and the latest array of single-cell omics technologies. We highlight some of the challenges and future directions and finally consider their scalability and make general recommendations on each type of feature selection method. We hope this review stimulates future research and application of feature selection in the single-cell era. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-021-02544-3. |
---|