Cargando…
Feature selection revisited in the single-cell era
Recent advances in single-cell biotechnologies have resulted in high-dimensional datasets with increased complexity, making feature selection an essential technique for single-cell data analysis. Here, we revisit feature selection techniques and summarise recent developments. We review their applica...
Autores principales: | Yang, Pengyi, Huang, Hao, Liu, Chunlei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8638336/ https://www.ncbi.nlm.nih.gov/pubmed/34847932 http://dx.doi.org/10.1186/s13059-021-02544-3 |
Ejemplares similares
-
Evaluation of deep learning-based feature selection for single-cell RNA sequencing data analysis
por: Huang, Hao, et al.
Publicado: (2023) -
Multi-task learning from multimodal single-cell omics with Matilda
por: Liu, Chunlei, et al.
Publicado: (2023) -
Computational approaches for direct cell reprogramming: from the bulk omics era to the single cell era
por: Tran, Andy, et al.
Publicado: (2022) -
Ensemble deep learning of embeddings for clustering multimodal single-cell omics data
por: Yu, Lijia, et al.
Publicado: (2023) -
Denoising Single Images by Feature Ensemble Revisited
por: Fahim, Masud An Nur Islam, et al.
Publicado: (2022)