Cargando…
On the Identification of Noise Covariances and Adaptive Kalman Filtering: A New Look at a 50 Year-Old Problem
The Kalman filter requires knowledge of the noise statistics; however, the noise covariances are generally unknown. Although this problem has a long history, reliable algorithms for their estimation are scant, and necessary and sufficient conditions for identifiability of the covariances are in disp...
Autores principales: | ZHANG, LINGYI, SIDOTI, DAVID, BIENKOWSKI, ADAM, PATTIPATI, KRISHNA R., BAR-SHALOM, YAAKOV, KLEINMAN, DAVID L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8638515/ https://www.ncbi.nlm.nih.gov/pubmed/34868797 http://dx.doi.org/10.1109/access.2020.2982407 |
Ejemplares similares
-
Measurement Noise Covariance-Adapting Kalman Filters for Varying Sensor Noise Situations
por: Chhabra, Anirudh, et al.
Publicado: (2021) -
Identification of Noise Covariance Matrices to Improve Orientation Estimation by Kalman Filter
por: Nez, Alexis, et al.
Publicado: (2018) -
A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance
por: Zheng, Binqi, et al.
Publicado: (2018) -
Adaptive Unscented Kalman Filter for Target Tracking with Unknown Time-Varying Noise Covariance
por: Ge, Baoshuang, et al.
Publicado: (2019) -
Novel Process Noise Model for GNSS Kalman Filter Based on Sensitivity Analysis of Covariance with Poor Satellite Geometry
por: Takayama, Yoji, et al.
Publicado: (2021)