Cargando…

Thermogravimetric analysis of the pyrolysis and combustion kinetics of surface dead combustibles in the Daxing’an Mountains

In boreal regions, the frequency of forest fires is increasing. In this study, thermogravimetric analysis was used to analyze the pyrolysis kinetics of dead surface combustibles in different forest types within the Daxing’an Mountains, China. The results show that the combustible material load of fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Shu, Yang, Zhang, Jinqi, Li, Wei, Zhao, Pengwu, Zhang, Qiyue, Zhou, Mei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8638970/
https://www.ncbi.nlm.nih.gov/pubmed/34855872
http://dx.doi.org/10.1371/journal.pone.0260790
Descripción
Sumario:In boreal regions, the frequency of forest fires is increasing. In this study, thermogravimetric analysis was used to analyze the pyrolysis kinetics of dead surface combustibles in different forest types within the Daxing’an Mountains, China. The results show that the combustible material load of forest types, the Larix forest (LG) is relatively high. Base on the E of kinetic parameters, the LG, and Quercus forest (QM) forest types had relatively high combustibility values and comprehensive combustibility values for 1-, 10-, and 100-h time lags. According to the obtained P values, the pyrolysis of dead surface fuels with 1-, 10-, and 100-h time lags is relatively difficult in the Larix / Betula mixed forest (L-B) and QM forest types. Therefore, mixed forests of the LG, L-B, and QM tree species can be established as fire-resistant forests to establish a fire barrier, reduce the combustibility of forest stands, and reduce the possibility of forest fires.