Cargando…
3D fluorescence microscopy data synthesis for segmentation and benchmarking
Automated image processing approaches are indispensable for many biomedical experiments and help to cope with the increasing amount of microscopy image data in a fast and reproducible way. Especially state-of-the-art deep learning-based approaches most often require large amounts of annotated traini...
Autores principales: | Eschweiler, Dennis, Rethwisch, Malte, Jarchow, Mareike, Koppers, Simon, Stegmaier, Johannes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639001/ https://www.ncbi.nlm.nih.gov/pubmed/34855812 http://dx.doi.org/10.1371/journal.pone.0260509 |
Ejemplares similares
-
NISNet3D: three-dimensional nuclear synthesis and instance segmentation for fluorescence microscopy images
por: Wu, Liming, et al.
Publicado: (2023) -
Benchmark for multi-cellular segmentation of bright field microscopy images
por: Zaritsky, Assaf, et al.
Publicado: (2013) -
Fast Segmentation of Stained Nuclei in Terabyte-Scale, Time Resolved 3D Microscopy Image Stacks
por: Stegmaier, Johannes, et al.
Publicado: (2014) -
EM-stellar: benchmarking deep learning for electron microscopy image segmentation
por: Khadangi, Afshin, et al.
Publicado: (2021) -
Quantitative Characterization of Macrophage, Lymphocyte, and Neutrophil Subtypes Within the Foreign Body Granuloma of Human Mesh Explants by 5-Marker Multiplex Fluorescence Microscopy
por: Klinge, Uwe, et al.
Publicado: (2022)