Cargando…

Effect of homophily and correlation of beliefs on COVID-19 and general infectious disease outbreaks

Contact between people with similar opinions and characteristics occurs at a higher rate than among other people, a phenomenon known as homophily. The presence of clusters of unvaccinated people has been associated with increased incidence of infectious disease outbreaks despite high population-wide...

Descripción completa

Detalles Bibliográficos
Autores principales: Kadelka, Claus, McCombs, Audrey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639064/
https://www.ncbi.nlm.nih.gov/pubmed/34855929
http://dx.doi.org/10.1371/journal.pone.0260973
Descripción
Sumario:Contact between people with similar opinions and characteristics occurs at a higher rate than among other people, a phenomenon known as homophily. The presence of clusters of unvaccinated people has been associated with increased incidence of infectious disease outbreaks despite high population-wide vaccination rates. The epidemiological consequences of homophily regarding other beliefs as well as correlations among beliefs or circumstances are poorly understood, however. Here, we use a simple compartmental disease model as well as a more complex COVID-19 model to study how homophily and correlation of beliefs and circumstances in a social interaction network affect the probability of disease outbreak and COVID-19-related mortality. We find that the current social context, characterized by the presence of homophily and correlations between who vaccinates, who engages in risk reduction, and individual risk status, corresponds to a situation with substantially worse disease burden than in the absence of heterogeneities. In the presence of an effective vaccine, the effects of homophily and correlation of beliefs and circumstances become stronger. Further, the optimal vaccination strategy depends on the degree of homophily regarding vaccination status as well as the relative level of risk mitigation high- and low-risk individuals practice. The developed methods are broadly applicable to any investigation in which node attributes in a graph might reasonably be expected to cluster or exhibit correlations.