Cargando…

Transcranial Magnetic Stimulation and Working Memory Training to Address Language Impairments in Aphasia: A Case Study

BACKGROUND: Traditionally, people with aphasia (PWA) are treated with impairment-based language therapy to improve receptive and expressive language skills. In addition to language deficits, PWA are often affected by some level of working memory (WM) impairments. Both language and working memory imp...

Descripción completa

Detalles Bibliográficos
Autores principales: Kranou-Economidou, Despina, Kambanaros, Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639281/
https://www.ncbi.nlm.nih.gov/pubmed/34868389
http://dx.doi.org/10.1155/2021/9164543
Descripción
Sumario:BACKGROUND: Traditionally, people with aphasia (PWA) are treated with impairment-based language therapy to improve receptive and expressive language skills. In addition to language deficits, PWA are often affected by some level of working memory (WM) impairments. Both language and working memory impairments combined have a negative impact on PWA's quality of life. The aim of this study was to investigate whether the application of intermittent theta-burst stimulation (iTBS) combined with computerized WM training will result in near-ransfer effects (i.e., trained WM) and far-transfer effects (i.e., untrained language tasks) and have a positive effect on the quality of life of PWA. METHODS: The participant was a 63-year-old Greek-Cypriot male who presented with mild receptive aphasia and short-term memory difficulties. Treatment was carried out using a multiple baseline (MB) design composed of a pretherapy or baseline testing phase, a therapy phase, and a posttherapy/follow-up phase. The treatment program involved iTBS application to the left dorsolateral prefrontal cortex (DLPFC), an area responsible for WM, for 10 consecutive sessions. The participant received a 3-minute iTBS application followed by 30-minute computer-assisted WM training. Outcome measures included a WM screening test, a standardized aphasia test, a nonverbal intelligence test, story-telling speech samples, a procedural discourse task, and a questionnaire addressing quality of life. These measures were performed three times before the treatment, immediately upon completion of the treatment, and once during follow-up testing at 3 months posttreatment. RESULTS: We found a beneficial effect of iTBS and WM training on naming, reading, WM, reasoning, narrative, communication efficiency, and quality of life (QoL). Implications for Rehabilitation. Noninvasive brain stimulation combined with computerized WM training may be used in aphasia rehabilitation to improve WM and generalize to language improvement.