Cargando…
Application of deep learning upon spinal radiographs to predict progression in adolescent idiopathic scoliosis at first clinic visit
BACKGROUND: Prediction of curve progression risk in adolescent idiopathic scoliosis (AIS) remains elusive. Prior studies have revealed the potential for three-dimensional (3D) morphological parameters to prognosticate progression, but these require specialized biplanar imaging equipment and labor-in...
Autores principales: | Wang, Hongfei, Zhang, Teng, Cheung, Kenneth Man-Chee, Shea, Graham Ka-Hon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639418/ https://www.ncbi.nlm.nih.gov/pubmed/34901796 http://dx.doi.org/10.1016/j.eclinm.2021.101220 |
Ejemplares similares
-
An intelligent composite model incorporating global / regional X-rays and clinical parameters to predict progressive adolescent idiopathic scoliosis curvatures and facilitate population screening
por: Wang, Hongfei, et al.
Publicado: (2023) -
An effective assessment method of spinal flexibility to predict the initial in-orthosis correction on the patients with adolescent idiopathic scoliosis (AIS)
por: He, Chen, et al.
Publicado: (2017) -
Radiographic indices for lumbar developmental spinal stenosis
por: Cheung, Jason Pui Yin, et al.
Publicado: (2017) -
Comparison of Radiographic and Surface Topography Measurements in Adolescents with Idiopathic Scoliosis
por: Frerich, Jason M, et al.
Publicado: (2012) -
Three-dimensional classification of the Lenke 1 adolescent idiopathic scoliosis using coronal and lateral spinal radiographs
por: Pasha, Saba, et al.
Publicado: (2020)