Cargando…

Dual-targeted carbon-dot-drugs nanoassemblies for modulating Alzheimer's related amyloid-β aggregation and inhibiting fungal infection

Amyloid aggregation and fungal infection, especially amyloid beta (Aβ) peptide and Candida albicans are considered as two of the crucial pathogenic agents in Alzheimer's disease (AD). In this work, we propose an innovative treatment strategy for AD, targeting at not only Aβ aggregation but also...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Chaoren, Wang, Chaoli, Shao, Xu, Shu, Qi, Hu, Xiaoling, Guan, Ping, Teng, Yonggang, Cheng, Yuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639470/
https://www.ncbi.nlm.nih.gov/pubmed/34901820
http://dx.doi.org/10.1016/j.mtbio.2021.100167
Descripción
Sumario:Amyloid aggregation and fungal infection, especially amyloid beta (Aβ) peptide and Candida albicans are considered as two of the crucial pathogenic agents in Alzheimer's disease (AD). In this work, we propose an innovative treatment strategy for AD, targeting at not only Aβ aggregation but also Candida albicans infection. Here, a high-performance nanomaterial, namely gCDs-E, have been prepared by self-assembled of glycosylated carbon dots (gCDs) and epigallocatechin-3-gallate (EGCG). Surprisingly, gCDs-E can not only suppress the fibrillation of Aβ and disaggregate Aβ fibrils, but also effectively inhibit the activity of Candida albicans. More importantly, the prepared gCDs-E can effectively cut down the cytotoxicity of amyloid aggregations, and the cell viability reached to 99.2%. In addition, the capability of the gCDs-E for blood brain barrier (BBB) penetration was also observed using a normal mice model. Above all, the gCDs-E greatly cleaned Aβ deposition and improved memory impairment in APP/PS1 transgenic AD model mice, confirming its potential as therapeutic agent for AD treatment.