Cargando…

The modern structurator: increased performance for calculating the structure function

The autocorrelation function is a statistical tool that is often combined with dynamic light scattering (DLS) techniques to investigate the dynamical behavior of the scattered light fluctuations in order to measure, for example, the diffusive behavior of transparent particles dispersed in a fluid. A...

Descripción completa

Detalles Bibliográficos
Autores principales: Norouzisadeh, Mojtaba, Chraga, Mohammed, Cerchiari, Giovanni, Croccolo, Fabrizio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639561/
https://www.ncbi.nlm.nih.gov/pubmed/34855019
http://dx.doi.org/10.1140/epje/s10189-021-00146-2
Descripción
Sumario:The autocorrelation function is a statistical tool that is often combined with dynamic light scattering (DLS) techniques to investigate the dynamical behavior of the scattered light fluctuations in order to measure, for example, the diffusive behavior of transparent particles dispersed in a fluid. An alternative approach to the autocorrelation function for the analysis of DLS data has been proposed decades ago and consists of calculating the autocorrelation function starting from difference of the signal at different times by using the so-called structure function. The structure function approach has been proven to be more robust than the autocorrelation function method in terms of noise and drift rejection. Therefore, the structure function analysis has gained visibility, in particular in combination with imaging techniques such as dynamic shadowgraphy and differential dynamic microscopy. Here, we show how the calculation of the structure function over thousands of images, typical of such techniques, can be accelerated, with the aim of achieving real-time analysis. The acceleration is realized by taking advantage of the Wiener–Khinchin theorem, i.e., by calculating the difference of images through Fourier transform in time. The new algorithm was tested both on CPU and GPU hardware, showing that the acceleration is particularly large in the case of CPU.