Cargando…

Non-monotonic variation of the Kramers point band gap with increasing magnetic doping in BiTeI

Polar Rashba-type semiconductor BiTeI doped with magnetic elements constitutes one of the most promising platforms for the future development of spintronics and quantum computing thanks to the combination of strong spin-orbit coupling and internal ferromagnetic ordering. The latter originates from m...

Descripción completa

Detalles Bibliográficos
Autores principales: Shikin, A. M., Rybkina, A. A., Estyunin, D. A., Klimovskikh, I. I., Rybkin, A. G., Filnov, S. O., Koroleva, A. V., Shevchenko, E. V., Likholetova, M. V., Voroshnin, V. Yu., Petukhov, A. E., Kokh, K. A., Tereshchenko, O. E., Petaccia, L., Di Santo, G., Kumar, S., Kimura, A., Skirdkov, P. N., Zvezdin, K. A., Zvezdin, A. K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639783/
https://www.ncbi.nlm.nih.gov/pubmed/34857800
http://dx.doi.org/10.1038/s41598-021-02493-8
_version_ 1784609207890214912
author Shikin, A. M.
Rybkina, A. A.
Estyunin, D. A.
Klimovskikh, I. I.
Rybkin, A. G.
Filnov, S. O.
Koroleva, A. V.
Shevchenko, E. V.
Likholetova, M. V.
Voroshnin, V. Yu.
Petukhov, A. E.
Kokh, K. A.
Tereshchenko, O. E.
Petaccia, L.
Di Santo, G.
Kumar, S.
Kimura, A.
Skirdkov, P. N.
Zvezdin, K. A.
Zvezdin, A. K.
author_facet Shikin, A. M.
Rybkina, A. A.
Estyunin, D. A.
Klimovskikh, I. I.
Rybkin, A. G.
Filnov, S. O.
Koroleva, A. V.
Shevchenko, E. V.
Likholetova, M. V.
Voroshnin, V. Yu.
Petukhov, A. E.
Kokh, K. A.
Tereshchenko, O. E.
Petaccia, L.
Di Santo, G.
Kumar, S.
Kimura, A.
Skirdkov, P. N.
Zvezdin, K. A.
Zvezdin, A. K.
author_sort Shikin, A. M.
collection PubMed
description Polar Rashba-type semiconductor BiTeI doped with magnetic elements constitutes one of the most promising platforms for the future development of spintronics and quantum computing thanks to the combination of strong spin-orbit coupling and internal ferromagnetic ordering. The latter originates from magnetic impurities and is able to open an energy gap at the Kramers point (KP gap) of the Rashba bands. In the current work using angle-resolved photoemission spectroscopy (ARPES) we show that the KP gap depends non-monotonically on the doping level in case of V-doped BiTeI. We observe that the gap increases with V concentration until it reaches 3% and then starts to mitigate. Moreover, we find that the saturation magnetisation of samples under applied magnetic field studied by superconducting quantum interference device (SQUID) magnetometer has a similar behaviour with the doping level. Theoretical analysis shows that the non-monotonic behavior can be explained by the increase of antiferromagnetic coupled atoms of magnetic impurity above a certain doping level. This leads to the reduction of the total magnetic moment in the domains and thus to the mitigation of the KP gap as observed in the experiment. These findings provide further insight in the creation of internal magnetic ordering and consequent KP gap opening in magnetically-doped Rashba-type semiconductors.
format Online
Article
Text
id pubmed-8639783
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-86397832021-12-06 Non-monotonic variation of the Kramers point band gap with increasing magnetic doping in BiTeI Shikin, A. M. Rybkina, A. A. Estyunin, D. A. Klimovskikh, I. I. Rybkin, A. G. Filnov, S. O. Koroleva, A. V. Shevchenko, E. V. Likholetova, M. V. Voroshnin, V. Yu. Petukhov, A. E. Kokh, K. A. Tereshchenko, O. E. Petaccia, L. Di Santo, G. Kumar, S. Kimura, A. Skirdkov, P. N. Zvezdin, K. A. Zvezdin, A. K. Sci Rep Article Polar Rashba-type semiconductor BiTeI doped with magnetic elements constitutes one of the most promising platforms for the future development of spintronics and quantum computing thanks to the combination of strong spin-orbit coupling and internal ferromagnetic ordering. The latter originates from magnetic impurities and is able to open an energy gap at the Kramers point (KP gap) of the Rashba bands. In the current work using angle-resolved photoemission spectroscopy (ARPES) we show that the KP gap depends non-monotonically on the doping level in case of V-doped BiTeI. We observe that the gap increases with V concentration until it reaches 3% and then starts to mitigate. Moreover, we find that the saturation magnetisation of samples under applied magnetic field studied by superconducting quantum interference device (SQUID) magnetometer has a similar behaviour with the doping level. Theoretical analysis shows that the non-monotonic behavior can be explained by the increase of antiferromagnetic coupled atoms of magnetic impurity above a certain doping level. This leads to the reduction of the total magnetic moment in the domains and thus to the mitigation of the KP gap as observed in the experiment. These findings provide further insight in the creation of internal magnetic ordering and consequent KP gap opening in magnetically-doped Rashba-type semiconductors. Nature Publishing Group UK 2021-12-02 /pmc/articles/PMC8639783/ /pubmed/34857800 http://dx.doi.org/10.1038/s41598-021-02493-8 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Shikin, A. M.
Rybkina, A. A.
Estyunin, D. A.
Klimovskikh, I. I.
Rybkin, A. G.
Filnov, S. O.
Koroleva, A. V.
Shevchenko, E. V.
Likholetova, M. V.
Voroshnin, V. Yu.
Petukhov, A. E.
Kokh, K. A.
Tereshchenko, O. E.
Petaccia, L.
Di Santo, G.
Kumar, S.
Kimura, A.
Skirdkov, P. N.
Zvezdin, K. A.
Zvezdin, A. K.
Non-monotonic variation of the Kramers point band gap with increasing magnetic doping in BiTeI
title Non-monotonic variation of the Kramers point band gap with increasing magnetic doping in BiTeI
title_full Non-monotonic variation of the Kramers point band gap with increasing magnetic doping in BiTeI
title_fullStr Non-monotonic variation of the Kramers point band gap with increasing magnetic doping in BiTeI
title_full_unstemmed Non-monotonic variation of the Kramers point band gap with increasing magnetic doping in BiTeI
title_short Non-monotonic variation of the Kramers point band gap with increasing magnetic doping in BiTeI
title_sort non-monotonic variation of the kramers point band gap with increasing magnetic doping in bitei
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639783/
https://www.ncbi.nlm.nih.gov/pubmed/34857800
http://dx.doi.org/10.1038/s41598-021-02493-8
work_keys_str_mv AT shikinam nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei
AT rybkinaaa nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei
AT estyuninda nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei
AT klimovskikhii nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei
AT rybkinag nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei
AT filnovso nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei
AT korolevaav nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei
AT shevchenkoev nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei
AT likholetovamv nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei
AT voroshninvyu nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei
AT petukhovae nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei
AT kokhka nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei
AT tereshchenkooe nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei
AT petaccial nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei
AT disantog nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei
AT kumars nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei
AT kimuraa nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei
AT skirdkovpn nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei
AT zvezdinka nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei
AT zvezdinak nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei