Cargando…
Non-monotonic variation of the Kramers point band gap with increasing magnetic doping in BiTeI
Polar Rashba-type semiconductor BiTeI doped with magnetic elements constitutes one of the most promising platforms for the future development of spintronics and quantum computing thanks to the combination of strong spin-orbit coupling and internal ferromagnetic ordering. The latter originates from m...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639783/ https://www.ncbi.nlm.nih.gov/pubmed/34857800 http://dx.doi.org/10.1038/s41598-021-02493-8 |
_version_ | 1784609207890214912 |
---|---|
author | Shikin, A. M. Rybkina, A. A. Estyunin, D. A. Klimovskikh, I. I. Rybkin, A. G. Filnov, S. O. Koroleva, A. V. Shevchenko, E. V. Likholetova, M. V. Voroshnin, V. Yu. Petukhov, A. E. Kokh, K. A. Tereshchenko, O. E. Petaccia, L. Di Santo, G. Kumar, S. Kimura, A. Skirdkov, P. N. Zvezdin, K. A. Zvezdin, A. K. |
author_facet | Shikin, A. M. Rybkina, A. A. Estyunin, D. A. Klimovskikh, I. I. Rybkin, A. G. Filnov, S. O. Koroleva, A. V. Shevchenko, E. V. Likholetova, M. V. Voroshnin, V. Yu. Petukhov, A. E. Kokh, K. A. Tereshchenko, O. E. Petaccia, L. Di Santo, G. Kumar, S. Kimura, A. Skirdkov, P. N. Zvezdin, K. A. Zvezdin, A. K. |
author_sort | Shikin, A. M. |
collection | PubMed |
description | Polar Rashba-type semiconductor BiTeI doped with magnetic elements constitutes one of the most promising platforms for the future development of spintronics and quantum computing thanks to the combination of strong spin-orbit coupling and internal ferromagnetic ordering. The latter originates from magnetic impurities and is able to open an energy gap at the Kramers point (KP gap) of the Rashba bands. In the current work using angle-resolved photoemission spectroscopy (ARPES) we show that the KP gap depends non-monotonically on the doping level in case of V-doped BiTeI. We observe that the gap increases with V concentration until it reaches 3% and then starts to mitigate. Moreover, we find that the saturation magnetisation of samples under applied magnetic field studied by superconducting quantum interference device (SQUID) magnetometer has a similar behaviour with the doping level. Theoretical analysis shows that the non-monotonic behavior can be explained by the increase of antiferromagnetic coupled atoms of magnetic impurity above a certain doping level. This leads to the reduction of the total magnetic moment in the domains and thus to the mitigation of the KP gap as observed in the experiment. These findings provide further insight in the creation of internal magnetic ordering and consequent KP gap opening in magnetically-doped Rashba-type semiconductors. |
format | Online Article Text |
id | pubmed-8639783 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-86397832021-12-06 Non-monotonic variation of the Kramers point band gap with increasing magnetic doping in BiTeI Shikin, A. M. Rybkina, A. A. Estyunin, D. A. Klimovskikh, I. I. Rybkin, A. G. Filnov, S. O. Koroleva, A. V. Shevchenko, E. V. Likholetova, M. V. Voroshnin, V. Yu. Petukhov, A. E. Kokh, K. A. Tereshchenko, O. E. Petaccia, L. Di Santo, G. Kumar, S. Kimura, A. Skirdkov, P. N. Zvezdin, K. A. Zvezdin, A. K. Sci Rep Article Polar Rashba-type semiconductor BiTeI doped with magnetic elements constitutes one of the most promising platforms for the future development of spintronics and quantum computing thanks to the combination of strong spin-orbit coupling and internal ferromagnetic ordering. The latter originates from magnetic impurities and is able to open an energy gap at the Kramers point (KP gap) of the Rashba bands. In the current work using angle-resolved photoemission spectroscopy (ARPES) we show that the KP gap depends non-monotonically on the doping level in case of V-doped BiTeI. We observe that the gap increases with V concentration until it reaches 3% and then starts to mitigate. Moreover, we find that the saturation magnetisation of samples under applied magnetic field studied by superconducting quantum interference device (SQUID) magnetometer has a similar behaviour with the doping level. Theoretical analysis shows that the non-monotonic behavior can be explained by the increase of antiferromagnetic coupled atoms of magnetic impurity above a certain doping level. This leads to the reduction of the total magnetic moment in the domains and thus to the mitigation of the KP gap as observed in the experiment. These findings provide further insight in the creation of internal magnetic ordering and consequent KP gap opening in magnetically-doped Rashba-type semiconductors. Nature Publishing Group UK 2021-12-02 /pmc/articles/PMC8639783/ /pubmed/34857800 http://dx.doi.org/10.1038/s41598-021-02493-8 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Shikin, A. M. Rybkina, A. A. Estyunin, D. A. Klimovskikh, I. I. Rybkin, A. G. Filnov, S. O. Koroleva, A. V. Shevchenko, E. V. Likholetova, M. V. Voroshnin, V. Yu. Petukhov, A. E. Kokh, K. A. Tereshchenko, O. E. Petaccia, L. Di Santo, G. Kumar, S. Kimura, A. Skirdkov, P. N. Zvezdin, K. A. Zvezdin, A. K. Non-monotonic variation of the Kramers point band gap with increasing magnetic doping in BiTeI |
title | Non-monotonic variation of the Kramers point band gap with increasing magnetic doping in BiTeI |
title_full | Non-monotonic variation of the Kramers point band gap with increasing magnetic doping in BiTeI |
title_fullStr | Non-monotonic variation of the Kramers point band gap with increasing magnetic doping in BiTeI |
title_full_unstemmed | Non-monotonic variation of the Kramers point band gap with increasing magnetic doping in BiTeI |
title_short | Non-monotonic variation of the Kramers point band gap with increasing magnetic doping in BiTeI |
title_sort | non-monotonic variation of the kramers point band gap with increasing magnetic doping in bitei |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639783/ https://www.ncbi.nlm.nih.gov/pubmed/34857800 http://dx.doi.org/10.1038/s41598-021-02493-8 |
work_keys_str_mv | AT shikinam nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei AT rybkinaaa nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei AT estyuninda nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei AT klimovskikhii nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei AT rybkinag nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei AT filnovso nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei AT korolevaav nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei AT shevchenkoev nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei AT likholetovamv nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei AT voroshninvyu nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei AT petukhovae nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei AT kokhka nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei AT tereshchenkooe nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei AT petaccial nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei AT disantog nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei AT kumars nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei AT kimuraa nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei AT skirdkovpn nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei AT zvezdinka nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei AT zvezdinak nonmonotonicvariationofthekramerspointbandgapwithincreasingmagneticdopinginbitei |