Cargando…
Connected-UNets: a deep learning architecture for breast mass segmentation
Breast cancer analysis implies that radiologists inspect mammograms to detect suspicious breast lesions and identify mass tumors. Artificial intelligence techniques offer automatic systems for breast mass segmentation to assist radiologists in their diagnosis. With the rapid development of deep lear...
Autores principales: | Baccouche, Asma, Garcia-Zapirain, Begonya, Castillo Olea, Cristian, Elmaghraby, Adel S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8640011/ https://www.ncbi.nlm.nih.gov/pubmed/34857755 http://dx.doi.org/10.1038/s41523-021-00358-x |
Ejemplares similares
-
An integrated framework for breast mass classification and diagnosis using stacked ensemble of residual neural networks
por: Baccouche, Asma, et al.
Publicado: (2022) -
Integrating 3D Model Representation for an Accurate Non-Invasive Assessment of Pressure Injuries with Deep Learning
por: Zahia, Sofia, et al.
Publicado: (2020) -
Automatic COVID-19 Lung Infection Segmentation through Modified Unet Model
por: Shamim, Sania, et al.
Publicado: (2022) -
Evaluation of Prevalence of the Sarcopenia Level Using Machine Learning Techniques: Case Study in Tijuana Baja California, Mexico
por: Castillo-Olea, Cristián, et al.
Publicado: (2020) -
Cervical cell’s nucleus segmentation through an improved UNet architecture
por: Rasheed, Assad, et al.
Publicado: (2023)