Cargando…
Temporal refinement of 3D CNN semantic segmentations on 4D time-series of undersampled tomograms using hidden Markov models
Recently, several convolutional neural networks have been proposed not only for 2D images, but also for 3D and 4D volume segmentation. Nevertheless, due to the large data size of the latter, acquiring a sufficient amount of training annotations is much more strenuous than in 2D images. For 4D time-s...
Autores principales: | Bellos, Dimitrios, Basham, Mark, Pridmore, Tony, French, Andrew P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8640015/ https://www.ncbi.nlm.nih.gov/pubmed/34857791 http://dx.doi.org/10.1038/s41598-021-02466-x |
Ejemplares similares
-
A convolutional neural network for fast upsampling of undersampled tomograms in X-ray CT time-series using a representative highly sampled tomogram
por: Bellos, Dimitrios, et al.
Publicado: (2019) -
Accurate Identification of Tomograms of Lung Nodules Using CNN: Influence of the Optimizer, Preprocessing and Segmentation
por: Loeza Mejía, Cecilia Irene, et al.
Publicado: (2020) -
Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm
por: Maglietta, Rosalia, et al.
Publicado: (2015) -
Towards infield, live plant phenotyping using a reduced-parameter CNN
por: Atanbori, John, et al.
Publicado: (2019) -
Multiple Hidden Markov Model for Pathological Vessel Segmentation
por: Hu, Xin, et al.
Publicado: (2018)