Cargando…
A brain extraction algorithm for infant T2 weighted magnetic resonance images based on fuzzy c-means thresholding
It is challenging to extract the brain region from T2-weighted magnetic resonance infant brain images because conventional brain segmentation algorithms are generally optimized for adult brain images, which have different spatial resolution, dynamic changes of imaging intensity, brain size and shape...
Autores principales: | Bae, Inyoung, Chae, Jong-Hee, Han, Yeji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8640033/ https://www.ncbi.nlm.nih.gov/pubmed/34857824 http://dx.doi.org/10.1038/s41598-021-02722-0 |
Ejemplares similares
-
Value of Magnetic Resonance Images and Magnetic Resonance Spectroscopy in Diagnosis of Brain Tumors under Fuzzy C-Means Algorithm
por: Liu, Huaiqin, et al.
Publicado: (2022) -
Fuzzy C-Means Algorithm-Based ARM-Linux-Embedded System Combined with Magnetic Resonance Imaging for Progression Prediction of Brain Tumors
por: Wang, Haibo, et al.
Publicado: (2022) -
Optimized Fuzzy C-Means Algorithm-Based Coronal Magnetic Resonance Imaging Scanning in Tracheal Foreign Bodies of Children
por: Jin, Lan, et al.
Publicado: (2021) -
A Revised Weighted Fuzzy C-Means and Center of Gravity Algorithm for Probabilistic Demand and Customer Positions
por: Bayturk, Engin, et al.
Publicado: (2020) -
Algorithms for fuzzy clustering: methods in c-means clustering with applications
por: Miyamoto, Sadaaki, et al.
Publicado: (2008)