Cargando…
A machine learning pipeline revealing heterogeneous responses to drug perturbations on vascular smooth muscle cell spheroid morphology and formation
Machine learning approaches have shown great promise in biology and medicine discovering hidden information to further understand complex biological and pathological processes. In this study, we developed a deep learning-based machine learning algorithm to meaningfully process image data and facilit...
Autores principales: | Vaidyanathan, Kalyanaraman, Wang, Chuangqi, Krajnik, Amanda, Yu, Yudong, Choi, Moses, Lin, Bolun, Jang, Junbong, Heo, Su-Jin, Kolega, John, Lee, Kwonmoo, Bae, Yongho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8640073/ https://www.ncbi.nlm.nih.gov/pubmed/34857846 http://dx.doi.org/10.1038/s41598-021-02683-4 |
Ejemplares similares
-
A deep learning-based segmentation pipeline for profiling cellular morphodynamics using multiple types of live cell microscopy
por: Jang, Junbong, et al.
Publicado: (2021) -
Survivin as a mediator of stiffness-induced cell cycle progression and proliferation of vascular smooth muscle cells
por: Biber, John C., et al.
Publicado: (2023) -
Emerging machine learning approaches to phenotyping cellular motility and morphodynamics
por: Choi, Hee June, et al.
Publicado: (2021) -
Survivin regulates intracellular stiffness and extracellular matrix production in vascular smooth muscle cells
por: Krajnik, Amanda, et al.
Publicado: (2023) -
Deconvolution of subcellular protrusion heterogeneity and the underlying actin regulator dynamics from live cell imaging
por: Wang, Chuangqi, et al.
Publicado: (2018)