Cargando…
Lipid Droplets Protect Aging Mitochondria and Thus Promote Lifespan in Yeast Cells
Besides their role as a storage for neutral lipids and sterols, there is increasing evidence that lipid droplets (LDs) are involved in cellular detoxification. LDs are in close contact to a broad variety of organelles where protein- and lipid exchange is mediated. Mitochondria as a main driver of th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8640092/ https://www.ncbi.nlm.nih.gov/pubmed/34869375 http://dx.doi.org/10.3389/fcell.2021.774985 |
_version_ | 1784609265255710720 |
---|---|
author | Kovacs, Melanie Geltinger, Florian Verwanger, Thomas Weiss, Richard Richter, Klaus Rinnerthaler, Mark |
author_facet | Kovacs, Melanie Geltinger, Florian Verwanger, Thomas Weiss, Richard Richter, Klaus Rinnerthaler, Mark |
author_sort | Kovacs, Melanie |
collection | PubMed |
description | Besides their role as a storage for neutral lipids and sterols, there is increasing evidence that lipid droplets (LDs) are involved in cellular detoxification. LDs are in close contact to a broad variety of organelles where protein- and lipid exchange is mediated. Mitochondria as a main driver of the aging process produce reactive oxygen species (ROS), which damage several cellular components. LDs as highly dynamic organelles mediate a potent detoxification mechanism by taking up toxic lipids and proteins. A stimulation of LDs induced by the simultaneously overexpression of Lro1p and Dga1p (both encoding acyltransferases) prolongs the chronological as well as the replicative lifespan of yeast cells. The increased number of LDs reduces mitochondrial fragmentation as well as mitochondrial ROS production, both phenotypes that are signs of aging. Strains with an altered LD content or morphology as in the sei1∆ or lro1∆ mutant lead to a reduced replicative lifespan. In a yeast strain defective for the LON protease Pim1p, which showed an enhanced ROS production, increased doubling time and an altered mitochondrial morphology, a LRO1 overexpression resulted in a partially reversion of this “premature aging” phenotype. |
format | Online Article Text |
id | pubmed-8640092 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86400922021-12-04 Lipid Droplets Protect Aging Mitochondria and Thus Promote Lifespan in Yeast Cells Kovacs, Melanie Geltinger, Florian Verwanger, Thomas Weiss, Richard Richter, Klaus Rinnerthaler, Mark Front Cell Dev Biol Cell and Developmental Biology Besides their role as a storage for neutral lipids and sterols, there is increasing evidence that lipid droplets (LDs) are involved in cellular detoxification. LDs are in close contact to a broad variety of organelles where protein- and lipid exchange is mediated. Mitochondria as a main driver of the aging process produce reactive oxygen species (ROS), which damage several cellular components. LDs as highly dynamic organelles mediate a potent detoxification mechanism by taking up toxic lipids and proteins. A stimulation of LDs induced by the simultaneously overexpression of Lro1p and Dga1p (both encoding acyltransferases) prolongs the chronological as well as the replicative lifespan of yeast cells. The increased number of LDs reduces mitochondrial fragmentation as well as mitochondrial ROS production, both phenotypes that are signs of aging. Strains with an altered LD content or morphology as in the sei1∆ or lro1∆ mutant lead to a reduced replicative lifespan. In a yeast strain defective for the LON protease Pim1p, which showed an enhanced ROS production, increased doubling time and an altered mitochondrial morphology, a LRO1 overexpression resulted in a partially reversion of this “premature aging” phenotype. Frontiers Media S.A. 2021-11-19 /pmc/articles/PMC8640092/ /pubmed/34869375 http://dx.doi.org/10.3389/fcell.2021.774985 Text en Copyright © 2021 Kovacs, Geltinger, Verwanger, Weiss, Richter and Rinnerthaler. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cell and Developmental Biology Kovacs, Melanie Geltinger, Florian Verwanger, Thomas Weiss, Richard Richter, Klaus Rinnerthaler, Mark Lipid Droplets Protect Aging Mitochondria and Thus Promote Lifespan in Yeast Cells |
title | Lipid Droplets Protect Aging Mitochondria and Thus Promote Lifespan in Yeast Cells |
title_full | Lipid Droplets Protect Aging Mitochondria and Thus Promote Lifespan in Yeast Cells |
title_fullStr | Lipid Droplets Protect Aging Mitochondria and Thus Promote Lifespan in Yeast Cells |
title_full_unstemmed | Lipid Droplets Protect Aging Mitochondria and Thus Promote Lifespan in Yeast Cells |
title_short | Lipid Droplets Protect Aging Mitochondria and Thus Promote Lifespan in Yeast Cells |
title_sort | lipid droplets protect aging mitochondria and thus promote lifespan in yeast cells |
topic | Cell and Developmental Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8640092/ https://www.ncbi.nlm.nih.gov/pubmed/34869375 http://dx.doi.org/10.3389/fcell.2021.774985 |
work_keys_str_mv | AT kovacsmelanie lipiddropletsprotectagingmitochondriaandthuspromotelifespaninyeastcells AT geltingerflorian lipiddropletsprotectagingmitochondriaandthuspromotelifespaninyeastcells AT verwangerthomas lipiddropletsprotectagingmitochondriaandthuspromotelifespaninyeastcells AT weissrichard lipiddropletsprotectagingmitochondriaandthuspromotelifespaninyeastcells AT richterklaus lipiddropletsprotectagingmitochondriaandthuspromotelifespaninyeastcells AT rinnerthalermark lipiddropletsprotectagingmitochondriaandthuspromotelifespaninyeastcells |