Cargando…
The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?
Physics-Informed Neural Networks (PINN) are neural networks encoding the problem governing equations, such as Partial Differential Equations (PDE), as a part of the neural network. PINNs have emerged as a new essential tool to solve various challenging problems, including computing linear systems ar...
Autor principal: | Markidis , Stefano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8640124/ https://www.ncbi.nlm.nih.gov/pubmed/34870188 http://dx.doi.org/10.3389/fdata.2021.669097 |
Ejemplares similares
-
Editorial: Advanced Deep Learning Methods for Biomedical Information Analysis (ADLMBIA)
por: Zhang, Yu-Dong, et al.
Publicado: (2022) -
Deep Graph Learning for Circuit Deobfuscation
por: Chen, Zhiqian, et al.
Publicado: (2021) -
Deep Representation Learning for Social Network Analysis
por: Tan, Qiaoyu, et al.
Publicado: (2019) -
Neural-Symbolic Argumentation Mining: An Argument in Favor of Deep Learning and Reasoning
por: Galassi, Andrea, et al.
Publicado: (2020) -
Deep Learning Exploration of Agent-Based Social Network Model Parameters
por: Murase, Yohsuke, et al.
Publicado: (2021)