Cargando…

Partial Measurement Invariance: Extending and Evaluating the Cluster Approach for Identifying Anchor Items

When measurement invariance does not hold, researchers aim for partial measurement invariance by identifying anchor items that are assumed to be measurement invariant. In this paper, we build on Bechger and Maris’s approach for identification of anchor items. Instead of identifying differential item...

Descripción completa

Detalles Bibliográficos
Autores principales: Pohl, Steffi, Schulze, Daniel, Stets, Eric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8640350/
https://www.ncbi.nlm.nih.gov/pubmed/34866708
http://dx.doi.org/10.1177/01466216211042809
_version_ 1784609324593577984
author Pohl, Steffi
Schulze, Daniel
Stets, Eric
author_facet Pohl, Steffi
Schulze, Daniel
Stets, Eric
author_sort Pohl, Steffi
collection PubMed
description When measurement invariance does not hold, researchers aim for partial measurement invariance by identifying anchor items that are assumed to be measurement invariant. In this paper, we build on Bechger and Maris’s approach for identification of anchor items. Instead of identifying differential item functioning (DIF)-free items, they propose to identify different sets of items that are invariant in item parameters within the same item set. We extend their approach by an additional step in order to allow for identification of homogeneously functioning item sets. We evaluate the performance of the extended cluster approach under various conditions and compare its performance to that of previous approaches, that are the equal-mean difficulty (EMD) approach and the iterative forward approach. We show that the EMD and the iterative forward approaches perform well in conditions with balanced DIF or when DIF is small. In conditions with large and unbalanced DIF, they fail to recover the true group mean differences. With appropriate threshold settings, the cluster approach identified a cluster that resulted in unbiased mean difference estimates in all conditions. Compared to previous approaches, the cluster approach allows for a variety of different assumptions as well as for depicting the uncertainty in the results that stem from the choice of the assumption. Using a real data set, we illustrate how the assumptions of the previous approaches may be incorporated in the cluster approach and how the chosen assumption impacts the results.
format Online
Article
Text
id pubmed-8640350
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-86403502021-12-04 Partial Measurement Invariance: Extending and Evaluating the Cluster Approach for Identifying Anchor Items Pohl, Steffi Schulze, Daniel Stets, Eric Appl Psychol Meas Articles When measurement invariance does not hold, researchers aim for partial measurement invariance by identifying anchor items that are assumed to be measurement invariant. In this paper, we build on Bechger and Maris’s approach for identification of anchor items. Instead of identifying differential item functioning (DIF)-free items, they propose to identify different sets of items that are invariant in item parameters within the same item set. We extend their approach by an additional step in order to allow for identification of homogeneously functioning item sets. We evaluate the performance of the extended cluster approach under various conditions and compare its performance to that of previous approaches, that are the equal-mean difficulty (EMD) approach and the iterative forward approach. We show that the EMD and the iterative forward approaches perform well in conditions with balanced DIF or when DIF is small. In conditions with large and unbalanced DIF, they fail to recover the true group mean differences. With appropriate threshold settings, the cluster approach identified a cluster that resulted in unbiased mean difference estimates in all conditions. Compared to previous approaches, the cluster approach allows for a variety of different assumptions as well as for depicting the uncertainty in the results that stem from the choice of the assumption. Using a real data set, we illustrate how the assumptions of the previous approaches may be incorporated in the cluster approach and how the chosen assumption impacts the results. SAGE Publications 2021-10-19 2021-10 /pmc/articles/PMC8640350/ /pubmed/34866708 http://dx.doi.org/10.1177/01466216211042809 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Articles
Pohl, Steffi
Schulze, Daniel
Stets, Eric
Partial Measurement Invariance: Extending and Evaluating the Cluster Approach for Identifying Anchor Items
title Partial Measurement Invariance: Extending and Evaluating the Cluster Approach for Identifying Anchor Items
title_full Partial Measurement Invariance: Extending and Evaluating the Cluster Approach for Identifying Anchor Items
title_fullStr Partial Measurement Invariance: Extending and Evaluating the Cluster Approach for Identifying Anchor Items
title_full_unstemmed Partial Measurement Invariance: Extending and Evaluating the Cluster Approach for Identifying Anchor Items
title_short Partial Measurement Invariance: Extending and Evaluating the Cluster Approach for Identifying Anchor Items
title_sort partial measurement invariance: extending and evaluating the cluster approach for identifying anchor items
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8640350/
https://www.ncbi.nlm.nih.gov/pubmed/34866708
http://dx.doi.org/10.1177/01466216211042809
work_keys_str_mv AT pohlsteffi partialmeasurementinvarianceextendingandevaluatingtheclusterapproachforidentifyinganchoritems
AT schulzedaniel partialmeasurementinvarianceextendingandevaluatingtheclusterapproachforidentifyinganchoritems
AT stetseric partialmeasurementinvarianceextendingandevaluatingtheclusterapproachforidentifyinganchoritems