Cargando…
Microbial Derived Compounds Are a Promising Approach to Mitigating Salinity Stress in Agricultural Crops
The use of microbial derived compounds is a technological approach currently gaining popularity among researchers, with hopes of complementing, supplementing and addressing key issues associated with use of microbial cells for enhancing plant growth. The new technology is a promising approach to mit...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8640360/ https://www.ncbi.nlm.nih.gov/pubmed/34867895 http://dx.doi.org/10.3389/fmicb.2021.765320 |
_version_ | 1784609326240890880 |
---|---|
author | Naamala, Judith Smith, Donald L. |
author_facet | Naamala, Judith Smith, Donald L. |
author_sort | Naamala, Judith |
collection | PubMed |
description | The use of microbial derived compounds is a technological approach currently gaining popularity among researchers, with hopes of complementing, supplementing and addressing key issues associated with use of microbial cells for enhancing plant growth. The new technology is a promising approach to mitigating effects of salinity stress in agricultural crops, given that these compounds could be less prone to effects of salt stress, are required in small quantities and are easier to store and handle than microbial cells. Microorganism derived compounds such as thuricin17, lipochitooligosaccharides, phytohormones and volatile organic compounds have been reported to mitigate the effects of salt stress in agricultural crops such as soybean and wheat. This mini-review compiles current knowledge regarding the use of microbe derived compounds in mitigating salinity stress in crops, the mechanisms they employ as well as future prospects. |
format | Online Article Text |
id | pubmed-8640360 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86403602021-12-04 Microbial Derived Compounds Are a Promising Approach to Mitigating Salinity Stress in Agricultural Crops Naamala, Judith Smith, Donald L. Front Microbiol Microbiology The use of microbial derived compounds is a technological approach currently gaining popularity among researchers, with hopes of complementing, supplementing and addressing key issues associated with use of microbial cells for enhancing plant growth. The new technology is a promising approach to mitigating effects of salinity stress in agricultural crops, given that these compounds could be less prone to effects of salt stress, are required in small quantities and are easier to store and handle than microbial cells. Microorganism derived compounds such as thuricin17, lipochitooligosaccharides, phytohormones and volatile organic compounds have been reported to mitigate the effects of salt stress in agricultural crops such as soybean and wheat. This mini-review compiles current knowledge regarding the use of microbe derived compounds in mitigating salinity stress in crops, the mechanisms they employ as well as future prospects. Frontiers Media S.A. 2021-11-19 /pmc/articles/PMC8640360/ /pubmed/34867895 http://dx.doi.org/10.3389/fmicb.2021.765320 Text en Copyright © 2021 Naamala and Smith. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Naamala, Judith Smith, Donald L. Microbial Derived Compounds Are a Promising Approach to Mitigating Salinity Stress in Agricultural Crops |
title | Microbial Derived Compounds Are a Promising Approach to Mitigating Salinity Stress in Agricultural Crops |
title_full | Microbial Derived Compounds Are a Promising Approach to Mitigating Salinity Stress in Agricultural Crops |
title_fullStr | Microbial Derived Compounds Are a Promising Approach to Mitigating Salinity Stress in Agricultural Crops |
title_full_unstemmed | Microbial Derived Compounds Are a Promising Approach to Mitigating Salinity Stress in Agricultural Crops |
title_short | Microbial Derived Compounds Are a Promising Approach to Mitigating Salinity Stress in Agricultural Crops |
title_sort | microbial derived compounds are a promising approach to mitigating salinity stress in agricultural crops |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8640360/ https://www.ncbi.nlm.nih.gov/pubmed/34867895 http://dx.doi.org/10.3389/fmicb.2021.765320 |
work_keys_str_mv | AT naamalajudith microbialderivedcompoundsareapromisingapproachtomitigatingsalinitystressinagriculturalcrops AT smithdonaldl microbialderivedcompoundsareapromisingapproachtomitigatingsalinitystressinagriculturalcrops |