Cargando…
Neural networks to learn protein sequence–function relationships from deep mutational scanning data
The mapping from protein sequence to function is highly complex, making it challenging to predict how sequence changes will affect a protein’s behavior and properties. We present a supervised deep learning framework to learn the sequence–function mapping from deep mutational scanning data and make p...
Autores principales: | Gelman, Sam, Fahlberg, Sarah A., Heinzelman, Pete, Romero, Philip A., Gitter, Anthony |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8640744/ https://www.ncbi.nlm.nih.gov/pubmed/34815338 http://dx.doi.org/10.1073/pnas.2104878118 |
Ejemplares similares
-
Neural network extrapolation to distant regions of the protein fitness landscape
por: Fahlberg, Sarah A, et al.
Publicado: (2023) -
Yeast surface display-based identification of ACE2 mutations that modulate SARS-CoV-2 spike binding across multiple mammalian species
por: Heinzelman, Pete, et al.
Publicado: (2022) -
Discovery of human ACE2 variants with altered recognition by the SARS-CoV-2 spike protein
por: Heinzelman, Pete, et al.
Publicado: (2020) -
Discovery of human ACE2 variants with altered recognition by the SARS-CoV-2 spike protein
por: Heinzelman, Pete, et al.
Publicado: (2021) -
Directed evolution of angiotensin‐converting enzyme 2 peptidase activity profiles for therapeutic applications
por: Heinzelman, Pete, et al.
Publicado: (2023)