Cargando…
Sparse Regression in Cancer Genomics: Comparing Variable Selection and Predictions in Real World Data
BACKGROUND: Evaluation of gene interaction models in cancer genomics is challenging, as the true distribution is uncertain. Previous analyses have benchmarked models using synthetic data or databases of experimentally verified interactions – approaches which are susceptible to misrepresentation and...
Autores principales: | O’Shea, Robert J, Tsoka, Sophia, Cook, Gary JR, Goh, Vicky |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8640984/ https://www.ncbi.nlm.nih.gov/pubmed/34866896 http://dx.doi.org/10.1177/11769351211056298 |
Ejemplares similares
-
Radiomic assessment of oesophageal adenocarcinoma: a critical review of 18F-FDG PET/CT, PET/MRI and CT
por: O’Shea, Robert J., et al.
Publicado: (2022) -
Weakly supervised segmentation models as explainable radiological classifiers for lung tumour detection on CT images
por: O’Shea, Robert, et al.
Publicado: (2023) -
Sparse partial least squares regression for simultaneous dimension reduction and variable selection
por: Chun, Hyonho, et al.
Publicado: (2010) -
Variable selection in social-environmental data: sparse regression and tree ensemble machine learning approaches
por: Handorf, Elizabeth, et al.
Publicado: (2020) -
Model selection for hybrid dynamical systems via sparse regression
por: Mangan, N. M., et al.
Publicado: (2019)