Cargando…
Optimal Scheduling for Laboratory Automation of Life Science Experiments with Time Constraints
In automated laboratories consisting of multiple different types of instruments, scheduling algorithms are useful for determining the optimal allocations of instruments to minimize the time required to complete experimental procedures. However, previous studies on scheduling algorithms for laborator...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641030/ https://www.ncbi.nlm.nih.gov/pubmed/34167357 http://dx.doi.org/10.1177/24726303211021790 |
Sumario: | In automated laboratories consisting of multiple different types of instruments, scheduling algorithms are useful for determining the optimal allocations of instruments to minimize the time required to complete experimental procedures. However, previous studies on scheduling algorithms for laboratory automation have not emphasized the time constraints by mutual boundaries (TCMBs) among operations, which is important in procedures involving live cells or unstable biomolecules. Here, we define the “scheduling for laboratory automation in biology” (S-LAB) problem as a scheduling problem for automated laboratories in which operations with TCMBs are performed by multiple different instruments. We formulate an S-LAB problem as a mixed-integer programming (MIP) problem and propose a scheduling method using the branch-and-bound algorithm. Simulations show that our method can find the optimal schedules of S-LAB problems that minimize overall execution time while satisfying the TCMBs. Furthermore, we propose the use of our scheduling method for the simulation-based design of job definitions and laboratory configurations. |
---|