Cargando…
Prediction of genetic alterations from gastric cancer histopathology images using a fully automated deep learning approach
BACKGROUND: Studies correlating specific genetic mutations and treatment response are ongoing to establish an effective treatment strategy for gastric cancer (GC). To facilitate this research, a cost- and time-effective method to analyze the mutational status is necessary. Deep learning (DL) has bee...
Autores principales: | Jang, Hyun-Jong, Lee, Ahwon, Kang, Jun, Song, In Hye, Lee, Sung Hak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641056/ https://www.ncbi.nlm.nih.gov/pubmed/34908807 http://dx.doi.org/10.3748/wjg.v27.i44.7687 |
Ejemplares similares
-
Prediction of clinically actionable genetic alterations from colorectal cancer histopathology images using deep learning
por: Jang, Hyun-Jong, et al.
Publicado: (2020) -
Deep Learning for Automatic Subclassification of Gastric Carcinoma Using Whole-Slide Histopathology Images
por: Jang, Hyun-Jong, et al.
Publicado: (2021) -
Feasibility of fully automated classification of whole slide images based on deep learning
por: Cho, Kyung-Ok, et al.
Publicado: (2020) -
Metabolomic alterations and chromosomal instability status in gastric cancer
por: Tsai, Cheng-Kun, et al.
Publicado: (2018) -
Chemotherapy response evaluation in a mouse model of gastric cancer using intravoxel incoherent motion diffusion-weighted MRI and histopathology
por: Cheng, Jin, et al.
Publicado: (2017)