Cargando…
DropletQC: improved identification of empty droplets and damaged cells in single-cell RNA-seq data
BACKGROUND: Advances in droplet-based single-cell RNA-sequencing (scRNA-seq) have dramatically increased throughput, allowing tens of thousands of cells to be routinely sequenced in a single experiment. In addition to cells, droplets capture cell-free “ambient” RNA predominantly caused by lysis of c...
Autores principales: | Muskovic, Walter, Powell, Joseph E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641258/ https://www.ncbi.nlm.nih.gov/pubmed/34857027 http://dx.doi.org/10.1186/s13059-021-02547-0 |
Ejemplares similares
-
EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data
por: Lun, Aaron T. L., et al.
Publicado: (2019) -
Quality control of single-cell RNA-seq by SinQC
por: Jiang, Peng, et al.
Publicado: (2016) -
Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads
por: De Rop, Florian V, et al.
Publicado: (2022) -
EmptyNN: A neural network based on positive and unlabeled learning to remove cell-free droplets and recover lost cells in scRNA-seq data
por: Yan, Fangfang, et al.
Publicado: (2021) -
Droplet Tn-Seq combines microfluidics with Tn-Seq for identifying complex single-cell phenotypes
por: Thibault, Derek, et al.
Publicado: (2019)