Cargando…
Comparison of Resampling Techniques for Imbalanced Datasets in Machine Learning: Application to Epileptogenic Zone Localization From Interictal Intracranial EEG Recordings in Patients With Focal Epilepsy
Aim: In neuroscience research, data are quite often characterized by an imbalanced distribution between the majority and minority classes, an issue that can limit or even worsen the prediction performance of machine learning methods. Different resampling procedures have been developed to face this p...
Autores principales: | Varotto, Giulia, Susi, Gianluca, Tassi, Laura, Gozzo, Francesca, Franceschetti, Silvana, Panzica, Ferruccio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641296/ https://www.ncbi.nlm.nih.gov/pubmed/34867255 http://dx.doi.org/10.3389/fninf.2021.715421 |
Ejemplares similares
-
Identification of the Epileptogenic Zone from Stereo-EEG Signals: A Connectivity-Graph Theory Approach
por: Panzica, Ferruccio, et al.
Publicado: (2013) -
Normative brain mapping of interictal intracranial EEG to localize epileptogenic tissue
por: Taylor, Peter N, et al.
Publicado: (2022) -
Quantifying interictal intracranial EEG to predict focal epilepsy
por: Gallagher, Ryan S, et al.
Publicado: (2023) -
Interictal epileptogenic zone localization in patients with focal epilepsy using electric source imaging and directed functional connectivity from low‐density EEG
por: Coito, Ana, et al.
Publicado: (2019) -
Commentary on Interictal epileptogenic zone localization in patients with focal epilepsy using electric source imaging and directed functional connectivity from low‐density EEG
por: Jehi, Lara
Publicado: (2020)