Cargando…
Effect of surface ligands on gold nanocatalysts for CO(2) reduction
Nanoparticle catalysts display optimal mass activity due to their high surface to volume ratio and tunable size and structure. However, control of nanoparticle size requires the presence of surface ligands, which significantly influence catalytic performance. In this work, we investigate the effect...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641489/ https://www.ncbi.nlm.nih.gov/pubmed/34976334 http://dx.doi.org/10.1039/d0sc05089j |
_version_ | 1784609504631980032 |
---|---|
author | Shang, Hongyu Wallentine, Spencer K. Hofmann, Daniel M. Zhu, Quansong Murphy, Catherine J. Baker, L. Robert |
author_facet | Shang, Hongyu Wallentine, Spencer K. Hofmann, Daniel M. Zhu, Quansong Murphy, Catherine J. Baker, L. Robert |
author_sort | Shang, Hongyu |
collection | PubMed |
description | Nanoparticle catalysts display optimal mass activity due to their high surface to volume ratio and tunable size and structure. However, control of nanoparticle size requires the presence of surface ligands, which significantly influence catalytic performance. In this work, we investigate the effect of dodecanethiol on the activity, selectivity, and stability of Au nanoparticles for electrochemical carbon dioxide reduction (CO(2)R). Results show that dodecanethiol on Au nanoparticles significantly enhances selectivity and stability with minimal loss in activity by acting as a CO(2)-permeable membrane, which blocks the deposition of metal ions that are otherwise responsible for rapid deactivation. Although dodecanethiol occupies 90% or more of the electrochemical active surface area, it has a negligible effect on the partial current density to CO, indicating that it specifically does not block the active sites responsible for CO(2)R. Further, by preventing trace ion deposition, dodecanethiol stabilizes CO production on Au nanoparticles under conditions where CO(2)R selectivity on polycrystalline Au rapidly decays to zero. Comparison with other surface ligands and nanoparticles shows that this effect is specific to both the chemical identity and the surface structure of the dodecanethiol monolayer. To demonstrate the potential of this catalyst, CO(2)R was performed in electrolyte prepared from ambient river water, and dodecanethiol-capped Au nanoparticles produce more than 100 times higher CO yield compared to clean polycrystalline Au at identical potential and similar current. |
format | Online Article Text |
id | pubmed-8641489 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-86414892021-12-30 Effect of surface ligands on gold nanocatalysts for CO(2) reduction Shang, Hongyu Wallentine, Spencer K. Hofmann, Daniel M. Zhu, Quansong Murphy, Catherine J. Baker, L. Robert Chem Sci Chemistry Nanoparticle catalysts display optimal mass activity due to their high surface to volume ratio and tunable size and structure. However, control of nanoparticle size requires the presence of surface ligands, which significantly influence catalytic performance. In this work, we investigate the effect of dodecanethiol on the activity, selectivity, and stability of Au nanoparticles for electrochemical carbon dioxide reduction (CO(2)R). Results show that dodecanethiol on Au nanoparticles significantly enhances selectivity and stability with minimal loss in activity by acting as a CO(2)-permeable membrane, which blocks the deposition of metal ions that are otherwise responsible for rapid deactivation. Although dodecanethiol occupies 90% or more of the electrochemical active surface area, it has a negligible effect on the partial current density to CO, indicating that it specifically does not block the active sites responsible for CO(2)R. Further, by preventing trace ion deposition, dodecanethiol stabilizes CO production on Au nanoparticles under conditions where CO(2)R selectivity on polycrystalline Au rapidly decays to zero. Comparison with other surface ligands and nanoparticles shows that this effect is specific to both the chemical identity and the surface structure of the dodecanethiol monolayer. To demonstrate the potential of this catalyst, CO(2)R was performed in electrolyte prepared from ambient river water, and dodecanethiol-capped Au nanoparticles produce more than 100 times higher CO yield compared to clean polycrystalline Au at identical potential and similar current. The Royal Society of Chemistry 2020-10-27 /pmc/articles/PMC8641489/ /pubmed/34976334 http://dx.doi.org/10.1039/d0sc05089j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Shang, Hongyu Wallentine, Spencer K. Hofmann, Daniel M. Zhu, Quansong Murphy, Catherine J. Baker, L. Robert Effect of surface ligands on gold nanocatalysts for CO(2) reduction |
title | Effect of surface ligands on gold nanocatalysts for CO(2) reduction |
title_full | Effect of surface ligands on gold nanocatalysts for CO(2) reduction |
title_fullStr | Effect of surface ligands on gold nanocatalysts for CO(2) reduction |
title_full_unstemmed | Effect of surface ligands on gold nanocatalysts for CO(2) reduction |
title_short | Effect of surface ligands on gold nanocatalysts for CO(2) reduction |
title_sort | effect of surface ligands on gold nanocatalysts for co(2) reduction |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641489/ https://www.ncbi.nlm.nih.gov/pubmed/34976334 http://dx.doi.org/10.1039/d0sc05089j |
work_keys_str_mv | AT shanghongyu effectofsurfaceligandsongoldnanocatalystsforco2reduction AT wallentinespencerk effectofsurfaceligandsongoldnanocatalystsforco2reduction AT hofmanndanielm effectofsurfaceligandsongoldnanocatalystsforco2reduction AT zhuquansong effectofsurfaceligandsongoldnanocatalystsforco2reduction AT murphycatherinej effectofsurfaceligandsongoldnanocatalystsforco2reduction AT bakerlrobert effectofsurfaceligandsongoldnanocatalystsforco2reduction |