Cargando…
A novel hyperspectral compressive sensing framework of plant leaves based on multiple arbitrary-shape regions of interest
Massive plant hyperspectral images (HSIs) result in huge storage space and put a heavy burden for the traditional data acquisition and compression technology. For plant leaf HSIs, useful plant information is located in multiple arbitrary-shape regions of interest (MAROIs), while the background usual...
Autores principales: | Jia, Yuewei, Xue, Lingyun, Xu, Ping, Luo, Bin, Chen, Ke-nan, Zhu, Lei, Liu, Yian, Yan, Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641574/ https://www.ncbi.nlm.nih.gov/pubmed/34909466 http://dx.doi.org/10.7717/peerj-cs.802 |
Ejemplares similares
-
Deterministic clustering based compressive sensing scheme for fog-supported heterogeneous wireless sensor networks
por: Osamy, Walid, et al.
Publicado: (2021) -
3D point cloud lossy compression using quadric surfaces
por: Imdad, Ulfat, et al.
Publicado: (2021) -
A trajectory data compression algorithm based on spatio-temporal characteristics
por: Zhong, Yanling, et al.
Publicado: (2022) -
Optimization of U-shaped pure transformer medical image segmentation network
por: Dan, Yongping, et al.
Publicado: (2023) -
A modular software framework for the design and implementation of ptychography algorithms
por: Guzzi, Francesco, et al.
Publicado: (2022)