Cargando…
Aedes-AI: Neural network models of mosquito abundance
We present artificial neural networks as a feasible replacement for a mechanistic model of mosquito abundance. We develop a feed-forward neural network, a long short-term memory recurrent neural network, and a gated recurrent unit network. We evaluate the networks in their ability to replicate the s...
Autores principales: | Kinney, Adrienne C., Current, Sean, Lega, Joceline |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641871/ https://www.ncbi.nlm.nih.gov/pubmed/34797822 http://dx.doi.org/10.1371/journal.pcbi.1009467 |
Ejemplares similares
-
EggCountAI: a convolutional neural network-based software for counting of Aedes aegypti mosquito eggs
por: Javed, Nouman, et al.
Publicado: (2023) -
Predicting Abundances of Aedes mcintoshi, a primary Rift Valley fever virus mosquito vector
por: Campbell, Lindsay P., et al.
Publicado: (2019) -
Data-driven outbreak forecasting with a simple nonlinear growth model
por: Lega, Joceline, et al.
Publicado: (2016) -
EpiCovDA: a mechanistic COVID-19 forecasting model with data assimilation
por: Biegel, Hannah R., et al.
Publicado: (2021) -
ATon, abundant novel nonautonomous mobile genetic elements in yellow fever mosquito (Aedes aegypti)
por: Yang, Guojun, et al.
Publicado: (2012)