Cargando…
Investigation of ANN architecture for predicting the compressive strength of concrete containing GGBFS
An extensive simulation program is used in this study to discover the best ANN model for predicting the compressive strength of concrete containing Ground Granulated Blast Furnace Slag (GGBFS). To accomplish this purpose, an experimental database of 595 samples is compiled from the literature and ut...
Autores principales: | Tran, Van Quan, Mai, Hai-Van Thi, Nguyen, Thuy-Anh, Ly, Hai-Bang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641896/ https://www.ncbi.nlm.nih.gov/pubmed/34860842 http://dx.doi.org/10.1371/journal.pone.0260847 |
Ejemplares similares
-
Investigation of ANN architecture for predicting shear strength of fiber reinforcement bars concrete beams
por: Nguyen, Quang Hung, et al.
Publicado: (2021) -
Investigation and Optimization of the C-ANN Structure in Predicting the Compressive Strength of Foamed Concrete
por: Dao, Dong Van, et al.
Publicado: (2020) -
Learned Prediction of Compressive Strength of GGBFS Concrete Using Hybrid Artificial Neural Network Models
por: Han, In-Ji, et al.
Publicado: (2019) -
ANN-Based Fatigue Strength of Concrete under Compression
por: Abambres, Miguel, et al.
Publicado: (2019) -
Optimization of Artificial Intelligence System by Evolutionary Algorithm for Prediction of Axial Capacity of Rectangular Concrete Filled Steel Tubes under Compression
por: Nguyen, Hung Quang, et al.
Publicado: (2020)