Cargando…
Crystal graph attention networks for the prediction of stable materials
Graph neural networks for crystal structures typically use the atomic positions and the atomic species as input. Unfortunately, this information is not available when predicting new materials, for which the precise geometrical information is unknown. We circumvent this problem by replacing the preci...
Autores principales: | Schmidt, Jonathan, Pettersson, Love, Verdozzi, Claudio, Botti, Silvana, Marques, Miguel A. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641929/ https://www.ncbi.nlm.nih.gov/pubmed/34860548 http://dx.doi.org/10.1126/sciadv.abi7948 |
Ejemplares similares
-
Examining graph neural networks for crystal structures: Limitations and opportunities for capturing periodicity
por: Gong, Sheng, et al.
Publicado: (2023) -
A dataset of 175k stable and metastable materials calculated with the PBEsol and SCAN functionals
por: Schmidt, Jonathan, et al.
Publicado: (2022) -
Rapid discovery of stable materials by coordinate-free coarse graining
por: Goodall, Rhys E. A., et al.
Publicado: (2022) -
Efficient catalyst screening using graph neural networks to predict strain effects on adsorption energy
por: Price, Christopher C., et al.
Publicado: (2022) -
Functional soft materials from blue phase liquid crystals
por: Bagchi, Kushal, et al.
Publicado: (2023)