Cargando…
Diagnostic Value of Deep Learning-Based CT Feature for Severe Pulmonary Infection
The study aimed to explore the diagnostic value of computed tomography (CT) images based on cavity convolution U-Net algorithm for patients with severe pulmonary infection. A new lung CT image segmentation algorithm (U-Net+ deep convolution (DC)) was proposed based on U-Net network and compared with...
Autores principales: | Huang, Tinglong, Zheng, Xuelan, He, Lisui, Chen, Zhiliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641994/ https://www.ncbi.nlm.nih.gov/pubmed/34868521 http://dx.doi.org/10.1155/2021/5359084 |
Ejemplares similares
-
The diagnostic and prognostic value of radiomics and deep learning technologies for patients with solid pulmonary nodules in chest CT images
por: Zhang, Rui, et al.
Publicado: (2022) -
Clinical diagnostic value of spiral CT in invasive pulmonary fungal infection
por: Wang, Junwei, et al.
Publicado: (2019) -
The diagnostic performance of deep-learning-based CT severity score to identify COVID-19 pneumonia
por: Kardos, Anna Sára, et al.
Publicado: (2022) -
Diagnostic Value of Artificial Intelligence Based on CT Image in Benign and Malignant Pulmonary Nodules
por: Du, Wang, et al.
Publicado: (2022) -
Diagnostic Efficacy of CT Radiomic Features in Pulmonary Invasive Mucinous Adenocarcinoma
por: Sheng, Aizhu, et al.
Publicado: (2022)