Cargando…
A SAR Target Recognition Method via Combination of Multilevel Deep Features
For the problem of synthetic aperture radar (SAR) image target recognition, a method via combination of multilevel deep features is proposed. The residual network (ResNet) is used to learn the multilevel deep features of SAR images. Based on the similarity measure, the multilevel deep features are c...
Autores principales: | Wang, Junhua, Jiang, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642017/ https://www.ncbi.nlm.nih.gov/pubmed/34868287 http://dx.doi.org/10.1155/2021/2392642 |
Ejemplares similares
-
Deep Learning Methods for Underwater Target Feature Extraction and Recognition
por: Hu, Gang, et al.
Publicado: (2018) -
Integrating Target and Shadow Features for SAR Target Recognition
por: Zhao, Zhiyuan, et al.
Publicado: (2023) -
Combining Clinical and Epidemiologic Features for Early Recognition of SARS
por: Jernigan, John A., et al.
Publicado: (2004) -
Multilevel and Multiscale Feature Aggregation in Deep Networks for Facial Constitution Classification
por: Huan, Er-Yang, et al.
Publicado: (2019) -
Image Object Recognition via Deep Feature-Based Adaptive Joint Sparse Representation
por: Wei, Wang, et al.
Publicado: (2019)