Cargando…
Use and performance of machine learning models for type 2 diabetes prediction in clinical and community care settings: Protocol for a systematic review and meta-analysis of predictive modeling studies
OBJECTIVE: Machine learning involves the use of algorithms without explicit instructions. Of late, machine learning models have been widely applied for the prediction of type 2 diabetes. However, no evidence synthesis of the performance of these prediction models of type 2 diabetes is available. We...
Autores principales: | De Silva, Kushan, Enticott, Joanne, Barton, Christopher, Forbes, Andrew, Saha, Sajal, Nikam, Rujuta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642048/ https://www.ncbi.nlm.nih.gov/pubmed/34868616 http://dx.doi.org/10.1177/20552076211047390 |
Ejemplares similares
-
Reporting of Model Performance and Statistical Methods in Studies That Use Machine Learning to Develop Clinical Prediction Models: Protocol for a Systematic Review
por: Weaver, Colin George Wyllie, et al.
Publicado: (2022) -
Nutritional markers of undiagnosed type 2 diabetes in adults: Findings of a machine learning analysis with external validation and benchmarking
por: De Silva, Kushan, et al.
Publicado: (2021) -
A data-driven biocomputing pipeline with meta-analysis on high throughput transcriptomics to identify genome-wide miRNA markers associated with type 2 diabetes
por: De Silva, Kushan, et al.
Publicado: (2022) -
Highly perturbed genes and hub genes associated with type 2 diabetes in different tissues of adult humans: a bioinformatics analytic workflow
por: De Silva, Kushan, et al.
Publicado: (2022) -
Multivariable prediction models for health care spending using machine learning: a protocol of a systematic review
por: Huang, Andrew W., et al.
Publicado: (2022)