Cargando…

Imageless robotic-assisted revision arthroplasty from UKA to TKA: Surgical technique and case-control study compared with primary robotic TKA

BACKGROUND AND OBJECTIVE: It is evident from the national joint registries that numbers of revision knee arthroplasty operations are rising. The aim of this article is to introduce a new robotic-assisted approach in UKA to TKA revision arthroplasty and investigate the alignment accuracy, implant com...

Descripción completa

Detalles Bibliográficos
Autores principales: Tuecking, Lars-Rene, Savov, Peter, Windhagen, Henning, Jennings, Simon, Nathwani, Dinesh, Ettinger, Max
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Medizin 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642254/
https://www.ncbi.nlm.nih.gov/pubmed/34714372
http://dx.doi.org/10.1007/s00132-021-04182-w
Descripción
Sumario:BACKGROUND AND OBJECTIVE: It is evident from the national joint registries that numbers of revision knee arthroplasty operations are rising. The aim of this article is to introduce a new robotic-assisted approach in UKA to TKA revision arthroplasty and investigate the alignment accuracy, implant component use and surgery time and to compare it to primary robotic-assisted TKA arthroplasty. METHODS: This retrospective, case-control study included patients undergoing image-less robotic-assisted revision arthroplasty from UKA to TKA (n = 20) and patients undergoing image-less robotic-assisted primary TKA (control group, n = 20) from 11/2018 to 07/2020. The control group was matched based on the BMI and natural alignment. Comparison of groups was based on postoperative alignment, outlier rate, tibial insert size, lateral bone resection depth, incision-to-wound closure time. All surgeries were performed by a single senior surgeon using the same bi-cruciate stabilizing TKA system. Statistical analysis consisted of parametric t‑testing and Fisher’s exact test with a level of significance of p < 0.05. RESULTS: The two groups showed no differences in mean BMI, natural alignment (p > 0.05) and mean overall limb alignment. No outlier was found for OLA and slope analysis. The smallest insert size (9 mm) was used in 70% of the cases in the revision group (n = 14) and in 90% of the cases in the primary group (n = 18, p = 0.24), distal femoral and tibial resection depth showed no statistical difference (p > 0.05). The incision to wound closure time was longer in the revision group but showed no significant difference. CONCLUSION: Image-less robotic-assisted revision arthroplasty from UKA to TKA showed a comparable surgery time, and alignment accuracy in comparison to primary robotic-assisted TKA. Comparable bone preservation and subsequent tibial insert size use was observed for both groups.