Cargando…
DeepRank: a deep learning framework for data mining 3D protein-protein interfaces
Three-dimensional (3D) structures of protein complexes provide fundamental information to decipher biological processes at the molecular scale. The vast amount of experimentally and computationally resolved protein-protein interfaces (PPIs) offers the possibility of training deep learning models to...
Autores principales: | Renaud, Nicolas, Geng, Cunliang, Georgievska, Sonja, Ambrosetti, Francesco, Ridder, Lars, Marzella, Dario F., Réau, Manon F., Bonvin, Alexandre M. J. J., Xue, Li C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642403/ https://www.ncbi.nlm.nih.gov/pubmed/34862392 http://dx.doi.org/10.1038/s41467-021-27396-0 |
Ejemplares similares
-
DeepRank-GNN: a graph neural network framework to learn patterns in protein–protein interfaces
por: Réau, Manon, et al.
Publicado: (2022) -
iScore: An MPI supported software for ranking protein–protein docking models based on a random walk graph kernel and support vector machines
por: Renaud, Nicolas, et al.
Publicado: (2020) -
iScore: a novel graph kernel-based function for scoring protein–protein docking models
por: Geng, Cunliang, et al.
Publicado: (2020) -
Shape-Restrained Modeling of Protein–Small-Molecule
Complexes with High Ambiguity Driven DOCKing
por: Koukos, Panagiotis I., et al.
Publicado: (2021) -
Deep mining of the protein energy landscape
por: Wand, A. Joshua
Publicado: (2023)