Cargando…
Reducing the nanoparticles generated at the wheel–rail contact by applying tap water lubricant at subway train operational velocities
The formation characteristics and the reduction of nanoparticles emitted from wheel–rail contacts at subway-train velocities of 73, 90, and 113 km/h under dry and water-lubricated conditions (using tap water) were studied using a twin-disk rig. The resulting number concentration (NC) of ultrafine an...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642489/ https://www.ncbi.nlm.nih.gov/pubmed/34862401 http://dx.doi.org/10.1038/s41598-021-02037-0 |
Sumario: | The formation characteristics and the reduction of nanoparticles emitted from wheel–rail contacts at subway-train velocities of 73, 90, and 113 km/h under dry and water-lubricated conditions (using tap water) were studied using a twin-disk rig. The resulting number concentration (NC) of ultrafine and fine particles increased with train velocity under both conditions. Particle generation varied with slip rate under both conditions in both the particle categories. Furthermore, the formation characteristics at 113 km/h under dry conditions showed a notable deviation from those under water-lubricated conditions in three aspects: (i) The maximum NC of ultrafine particles was higher than that of fine particles, (ii) the predominant peak diameter was in the ultrafine particles category, and (iii) the proportion of ultrafine particles was much higher than those of the fine particles. Applying water decreased the NC of ultrafine and fine particles significantly at all tested velocities (by 54–69% and 87–91%, respectively). Adding water increased the NC of particles ≤ 35 nm in diameter, possibly owing to the increase in water vapor and mineral crystals from tap water. Overall, this study provides a reference for researchers aiming to minimize nanoparticle formation at the wheel–rail contacts by applying a lubricant. |
---|