Cargando…
A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure
Heterogeneity of brain diseases is a challenge for precision diagnosis/prognosis. We describe and validate Smile-GAN (SeMI-supervised cLustEring-Generative Adversarial Network), a semi-supervised deep-clustering method, which examines neuroanatomical heterogeneity contrasted against normal brain str...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642554/ https://www.ncbi.nlm.nih.gov/pubmed/34862382 http://dx.doi.org/10.1038/s41467-021-26703-z |
_version_ | 1784609702181601280 |
---|---|
author | Yang, Zhijian Nasrallah, Ilya M. Shou, Haochang Wen, Junhao Doshi, Jimit Habes, Mohamad Erus, Guray Abdulkadir, Ahmed Resnick, Susan M. Albert, Marilyn S. Maruff, Paul Fripp, Jurgen Morris, John C. Wolk, David A. Davatzikos, Christos |
author_facet | Yang, Zhijian Nasrallah, Ilya M. Shou, Haochang Wen, Junhao Doshi, Jimit Habes, Mohamad Erus, Guray Abdulkadir, Ahmed Resnick, Susan M. Albert, Marilyn S. Maruff, Paul Fripp, Jurgen Morris, John C. Wolk, David A. Davatzikos, Christos |
author_sort | Yang, Zhijian |
collection | PubMed |
description | Heterogeneity of brain diseases is a challenge for precision diagnosis/prognosis. We describe and validate Smile-GAN (SeMI-supervised cLustEring-Generative Adversarial Network), a semi-supervised deep-clustering method, which examines neuroanatomical heterogeneity contrasted against normal brain structure, to identify disease subtypes through neuroimaging signatures. When applied to regional volumes derived from T1-weighted MRI (two studies; 2,832 participants; 8,146 scans) including cognitively normal individuals and those with cognitive impairment and dementia, Smile-GAN identified four patterns or axes of neurodegeneration. Applying this framework to longitudinal data revealed two distinct progression pathways. Measures of expression of these patterns predicted the pathway and rate of future neurodegeneration. Pattern expression offered complementary performance to amyloid/tau in predicting clinical progression. These deep-learning derived biomarkers offer potential for precision diagnostics and targeted clinical trial recruitment. |
format | Online Article Text |
id | pubmed-8642554 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-86425542021-12-15 A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure Yang, Zhijian Nasrallah, Ilya M. Shou, Haochang Wen, Junhao Doshi, Jimit Habes, Mohamad Erus, Guray Abdulkadir, Ahmed Resnick, Susan M. Albert, Marilyn S. Maruff, Paul Fripp, Jurgen Morris, John C. Wolk, David A. Davatzikos, Christos Nat Commun Article Heterogeneity of brain diseases is a challenge for precision diagnosis/prognosis. We describe and validate Smile-GAN (SeMI-supervised cLustEring-Generative Adversarial Network), a semi-supervised deep-clustering method, which examines neuroanatomical heterogeneity contrasted against normal brain structure, to identify disease subtypes through neuroimaging signatures. When applied to regional volumes derived from T1-weighted MRI (two studies; 2,832 participants; 8,146 scans) including cognitively normal individuals and those with cognitive impairment and dementia, Smile-GAN identified four patterns or axes of neurodegeneration. Applying this framework to longitudinal data revealed two distinct progression pathways. Measures of expression of these patterns predicted the pathway and rate of future neurodegeneration. Pattern expression offered complementary performance to amyloid/tau in predicting clinical progression. These deep-learning derived biomarkers offer potential for precision diagnostics and targeted clinical trial recruitment. Nature Publishing Group UK 2021-12-03 /pmc/articles/PMC8642554/ /pubmed/34862382 http://dx.doi.org/10.1038/s41467-021-26703-z Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Yang, Zhijian Nasrallah, Ilya M. Shou, Haochang Wen, Junhao Doshi, Jimit Habes, Mohamad Erus, Guray Abdulkadir, Ahmed Resnick, Susan M. Albert, Marilyn S. Maruff, Paul Fripp, Jurgen Morris, John C. Wolk, David A. Davatzikos, Christos A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure |
title | A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure |
title_full | A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure |
title_fullStr | A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure |
title_full_unstemmed | A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure |
title_short | A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure |
title_sort | deep learning framework identifies dimensional representations of alzheimer’s disease from brain structure |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642554/ https://www.ncbi.nlm.nih.gov/pubmed/34862382 http://dx.doi.org/10.1038/s41467-021-26703-z |
work_keys_str_mv | AT yangzhijian adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT nasrallahilyam adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT shouhaochang adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT wenjunhao adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT doshijimit adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT habesmohamad adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT erusguray adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT abdulkadirahmed adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT resnicksusanm adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT albertmarilyns adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT maruffpaul adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT frippjurgen adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT morrisjohnc adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT wolkdavida adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT davatzikoschristos adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT yangzhijian deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT nasrallahilyam deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT shouhaochang deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT wenjunhao deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT doshijimit deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT habesmohamad deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT erusguray deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT abdulkadirahmed deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT resnicksusanm deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT albertmarilyns deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT maruffpaul deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT frippjurgen deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT morrisjohnc deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT wolkdavida deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT davatzikoschristos deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure AT deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure |