Cargando…

A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure

Heterogeneity of brain diseases is a challenge for precision diagnosis/prognosis. We describe and validate Smile-GAN (SeMI-supervised cLustEring-Generative Adversarial Network), a semi-supervised deep-clustering method, which examines neuroanatomical heterogeneity contrasted against normal brain str...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Zhijian, Nasrallah, Ilya M., Shou, Haochang, Wen, Junhao, Doshi, Jimit, Habes, Mohamad, Erus, Guray, Abdulkadir, Ahmed, Resnick, Susan M., Albert, Marilyn S., Maruff, Paul, Fripp, Jurgen, Morris, John C., Wolk, David A., Davatzikos, Christos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642554/
https://www.ncbi.nlm.nih.gov/pubmed/34862382
http://dx.doi.org/10.1038/s41467-021-26703-z
_version_ 1784609702181601280
author Yang, Zhijian
Nasrallah, Ilya M.
Shou, Haochang
Wen, Junhao
Doshi, Jimit
Habes, Mohamad
Erus, Guray
Abdulkadir, Ahmed
Resnick, Susan M.
Albert, Marilyn S.
Maruff, Paul
Fripp, Jurgen
Morris, John C.
Wolk, David A.
Davatzikos, Christos
author_facet Yang, Zhijian
Nasrallah, Ilya M.
Shou, Haochang
Wen, Junhao
Doshi, Jimit
Habes, Mohamad
Erus, Guray
Abdulkadir, Ahmed
Resnick, Susan M.
Albert, Marilyn S.
Maruff, Paul
Fripp, Jurgen
Morris, John C.
Wolk, David A.
Davatzikos, Christos
author_sort Yang, Zhijian
collection PubMed
description Heterogeneity of brain diseases is a challenge for precision diagnosis/prognosis. We describe and validate Smile-GAN (SeMI-supervised cLustEring-Generative Adversarial Network), a semi-supervised deep-clustering method, which examines neuroanatomical heterogeneity contrasted against normal brain structure, to identify disease subtypes through neuroimaging signatures. When applied to regional volumes derived from T1-weighted MRI (two studies; 2,832 participants; 8,146 scans) including cognitively normal individuals and those with cognitive impairment and dementia, Smile-GAN identified four patterns or axes of neurodegeneration. Applying this framework to longitudinal data revealed two distinct progression pathways. Measures of expression of these patterns predicted the pathway and rate of future neurodegeneration. Pattern expression offered complementary performance to amyloid/tau in predicting clinical progression. These deep-learning derived biomarkers offer potential for precision diagnostics and targeted clinical trial recruitment.
format Online
Article
Text
id pubmed-8642554
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-86425542021-12-15 A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure Yang, Zhijian Nasrallah, Ilya M. Shou, Haochang Wen, Junhao Doshi, Jimit Habes, Mohamad Erus, Guray Abdulkadir, Ahmed Resnick, Susan M. Albert, Marilyn S. Maruff, Paul Fripp, Jurgen Morris, John C. Wolk, David A. Davatzikos, Christos Nat Commun Article Heterogeneity of brain diseases is a challenge for precision diagnosis/prognosis. We describe and validate Smile-GAN (SeMI-supervised cLustEring-Generative Adversarial Network), a semi-supervised deep-clustering method, which examines neuroanatomical heterogeneity contrasted against normal brain structure, to identify disease subtypes through neuroimaging signatures. When applied to regional volumes derived from T1-weighted MRI (two studies; 2,832 participants; 8,146 scans) including cognitively normal individuals and those with cognitive impairment and dementia, Smile-GAN identified four patterns or axes of neurodegeneration. Applying this framework to longitudinal data revealed two distinct progression pathways. Measures of expression of these patterns predicted the pathway and rate of future neurodegeneration. Pattern expression offered complementary performance to amyloid/tau in predicting clinical progression. These deep-learning derived biomarkers offer potential for precision diagnostics and targeted clinical trial recruitment. Nature Publishing Group UK 2021-12-03 /pmc/articles/PMC8642554/ /pubmed/34862382 http://dx.doi.org/10.1038/s41467-021-26703-z Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Yang, Zhijian
Nasrallah, Ilya M.
Shou, Haochang
Wen, Junhao
Doshi, Jimit
Habes, Mohamad
Erus, Guray
Abdulkadir, Ahmed
Resnick, Susan M.
Albert, Marilyn S.
Maruff, Paul
Fripp, Jurgen
Morris, John C.
Wolk, David A.
Davatzikos, Christos
A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure
title A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure
title_full A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure
title_fullStr A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure
title_full_unstemmed A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure
title_short A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure
title_sort deep learning framework identifies dimensional representations of alzheimer’s disease from brain structure
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642554/
https://www.ncbi.nlm.nih.gov/pubmed/34862382
http://dx.doi.org/10.1038/s41467-021-26703-z
work_keys_str_mv AT yangzhijian adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT nasrallahilyam adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT shouhaochang adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT wenjunhao adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT doshijimit adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT habesmohamad adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT erusguray adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT abdulkadirahmed adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT resnicksusanm adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT albertmarilyns adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT maruffpaul adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT frippjurgen adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT morrisjohnc adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT wolkdavida adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT davatzikoschristos adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT adeeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT yangzhijian deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT nasrallahilyam deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT shouhaochang deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT wenjunhao deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT doshijimit deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT habesmohamad deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT erusguray deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT abdulkadirahmed deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT resnicksusanm deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT albertmarilyns deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT maruffpaul deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT frippjurgen deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT morrisjohnc deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT wolkdavida deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT davatzikoschristos deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure
AT deeplearningframeworkidentifiesdimensionalrepresentationsofalzheimersdiseasefrombrainstructure