Cargando…
A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure
Heterogeneity of brain diseases is a challenge for precision diagnosis/prognosis. We describe and validate Smile-GAN (SeMI-supervised cLustEring-Generative Adversarial Network), a semi-supervised deep-clustering method, which examines neuroanatomical heterogeneity contrasted against normal brain str...
Autores principales: | Yang, Zhijian, Nasrallah, Ilya M., Shou, Haochang, Wen, Junhao, Doshi, Jimit, Habes, Mohamad, Erus, Guray, Abdulkadir, Ahmed, Resnick, Susan M., Albert, Marilyn S., Maruff, Paul, Fripp, Jurgen, Morris, John C., Wolk, David A., Davatzikos, Christos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642554/ https://www.ncbi.nlm.nih.gov/pubmed/34862382 http://dx.doi.org/10.1038/s41467-021-26703-z |
Ejemplares similares
-
Disentangling Alzheimer’s disease neurodegeneration from typical brain ageing using machine learning
por: Hwang, Gyujoon, et al.
Publicado: (2022) -
Regional tract-specific white matter hyperintensities are associated with patterns of aging-related brain atrophy via vascular risk factors, but also independently
por: Habes, Mohamad, et al.
Publicado: (2018) -
White matter hyperintensities are more highly associated with preclinical Alzheimer's disease than imaging and cognitive markers of neurodegeneration
por: Kandel, Benjamin M., et al.
Publicado: (2016) -
Neuroimaging-AI Endophenotypes of Brain Diseases in the General Population: Towards a Dimensional System of Vulnerability
por: Wen, Junhao, et al.
Publicado: (2023) -
Sex differences in the association between amyloid and longitudinal brain volume change in cognitively normal older adults
por: Armstrong, Nicole M., et al.
Publicado: (2019)