Cargando…
Pure photosensitizer-driven nanoassembly with core-matched PEGylation for imaging-guided photodynamic therapy
Pure drug-assembled nanomedicines (PDANs) are currently under intensive investigation as promising nanoplatforms for cancer therapy. However, poor colloidal stability and less tumor-homing ability remain critical unresolved problems that impede their clinical translation. Herein, we report a core-ma...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642600/ https://www.ncbi.nlm.nih.gov/pubmed/34900542 http://dx.doi.org/10.1016/j.apsb.2021.04.005 |
Sumario: | Pure drug-assembled nanomedicines (PDANs) are currently under intensive investigation as promising nanoplatforms for cancer therapy. However, poor colloidal stability and less tumor-homing ability remain critical unresolved problems that impede their clinical translation. Herein, we report a core-matched nanoassembly of pyropheophorbide a (PPa) for photodynamic therapy (PDT). Pure PPa molecules are found to self-assemble into nanoparticles (NPs), and an amphiphilic PEG polymer (PPa-PEG(2K)) is utilized to achieve core-matched PEGylating modification via the π‒π stacking effect and hydrophobic interaction between the PPa core and the PPa-PEG(2K) shell. Compared to PCL-PEG(2K) with similar molecular weight, PPa-PEG(2K) significantly increases the stability, prolongs the systemic circulation and improves the tumor-homing ability and ROS generation efficiency of PPa-nanoassembly. As a result, PPa/PPa-PEG(2K) NPs exert potent antitumor activity in a 4T1 breast tumor-bearing BALB/c mouse xenograft model. Together, such a core-matched nanoassembly of pure photosensitizer provides a new strategy for the development of imaging-guided theragnostic nanomedicines. |
---|