Cargando…
Identification of natural selection in genomic data with deep convolutional neural network
BACKGROUND: With the increase in the size of genomic datasets describing variability in populations, extracting relevant information becomes increasingly useful as well as complex. Recently, computational methodologies such as Supervised Machine Learning and specifically Convolutional Neural Network...
Autores principales: | Nguembang Fadja, Arnaud, Riguzzi, Fabrizio, Bertorelle, Giorgio, Trucchi, Emiliano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642854/ https://www.ncbi.nlm.nih.gov/pubmed/34863217 http://dx.doi.org/10.1186/s13040-021-00280-9 |
Ejemplares similares
-
Neural-Symbolic Ensemble Learning for early-stage prediction of critical state of Covid-19 patients
por: Fadja, Arnaud Nguembang, et al.
Publicado: (2022) -
Relaxation of Natural Selection in the Evolution of the Giant Lungfish Genomes
por: Fuselli, Silvia, et al.
Publicado: (2023) -
Population Dynamics and Structural Effects at Short and Long Range Support the Hypothesis of the Selective Advantage of the G614 SARS-CoV-2 Spike Variant
por: Trucchi, Emiliano, et al.
Publicado: (2021) -
Applications of deep convolutional neural networks to digitized natural history collections
por: Schuettpelz, Eric, et al.
Publicado: (2017) -
ImaGene: a convolutional neural network to quantify natural selection from genomic data
por: Torada, Luis, et al.
Publicado: (2019)