Cargando…
Effect of stocking density and age on physiological performance and dynamic gut bacterial and fungal communities in Langya hens
BACKGROUND: The characterization of colonization and dynamic changes related to gut microorganisms might be vital, as it presents an opportunity to quantify the co-variation between stocking densities and gut microbiome of dynamic distribution. The objective of this study was to determine the stocki...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642922/ https://www.ncbi.nlm.nih.gov/pubmed/34863176 http://dx.doi.org/10.1186/s12934-021-01707-y |
Sumario: | BACKGROUND: The characterization of colonization and dynamic changes related to gut microorganisms might be vital, as it presents an opportunity to quantify the co-variation between stocking densities and gut microbiome of dynamic distribution. The objective of this study was to determine the stocking density on physiological performance and dynamic distribution of gut microbiome (including bacterial and fungal communities) of Langya laying hens in the two development stages. METHODS: A randomized design with 2 × 3 factorial controls consisting of two development stages (24, 43 weeks-old) with three different stocking densities was performed. Three different stocking densities were allocated to a total of 300 11-week-old Langya laying hens (450 cm(2)/bird, 675 cm(2)/bird, 900 cm(2)/bird). Three housing densities were accomplished by raising different chickens per cage with the same floor size. The dependent variables of stocking densities at each sampling point were; growth performance, organs index, egg quality and the changes of dynamic gut bacterial and fungal communities in the cecum. RESULTS: Results showed that the stocking density didn’t affect liver index, eggshell thickness, breaking shell strength and egg shape index. Hens from the highest stocking density had the lowest body weight, fallopian tube index, egg weight and yolk colour score. Except for the yolk colour score, the measurement changes caused by age followed the opposite pattern as stocking density. We observed a substantial rise in taxa linked with health threats when stocking density was increased, including Talaromyces, Oscillospiraceae_UCG-002, Oscillospira, and Dielma. The opposite was observed with Bacteroides, Bifidobacterium, Lachnoclostridium, Eisenbergiella, and Kurtzmaniella. Also, most taxa were linked to polymicrobial infection in clinical cases, especially species whose percentage declined as the hens aged, such as Terrisporobacter, Faecalicoccus, Dialister, Cylindrocarpon etc. Whereas Sellimonas, Mitsuokella, Eurotium, Wardomyces and Cephalotheca had the opposite trend. CONCLUSION: We speculated that excessive high density drove the abundance of bacteria and fungi connected with health problems. Where the gut microecology gradually reach a mature and balance status with age. Overall, this study demonstrates gut microbiome ecological processes in Langya layers at various stocking densities and finds possible connections between stocking density, microbiome and production performance. Our study will contribute to new insights associating suitable density patterns and production performance in laying hens by harnessing such a relative microbiome. |
---|